989 resultados para water economy
Resumo:
Handwritten information on back of photo(s).
Resumo:
Handwritten information on back of photo(s).
Resumo:
Cyanobacterial mass occurrences, also known as water blooms, have been associated with adverse health effects of both humans and animals. They can also be a burden to drinking water treatment facilities. Risk assessments of the blooms have generally focused on the cyanobacteria themselves and their toxins. However, heterotrophic bacteria thriving among cyanobacteria may also be responsible for many of the adverse health effects, but their role as the etiological agents of these health problems is poorly known. In addition, studies on the water purification efficiency of operating water treatment plants during cyanobacterial mass occurrences in their water sources are rare. In the present study, over 600 heterotrophic bacterial strains were isolated from natural freshwater, brackish water or from treated drinking water. The sampling sites were selected as having frequent cyanobacterial occurrences in the water bodies or in the water sources of the drinking water treatment plants. In addition, samples were taken from sites where cyanobacterial water blooms were surmised to have caused human health problems. The isolated strains represented bacteria from 57 different genera of the Gamma-, Alpha- or Betaproteobacteria, Actinobacteria, Flavobacteria, Sphingobacteria, Bacilli and Deinococci classes, based on their partial 16S rRNA sequences. Several isolates had no close relatives among previously isolated bacteria or cloned 16S rRNA genes of uncultivated bacteria. The results show that water blooms are associated with a diverse community of cultivable heterotrophic bacteria. Chosen subsets of the isolated strains were analysed for features such as their virulence gene content and possible effect on cyanobacterial growth. Of the putatively pathogenic haemolytic strains isolated in the study, the majority represented the genus Aeromonas. Therefore, the Aeromonas spp. strains isolated from water samples associated with adverse health effects were screened for the virulence gene types encoding for enterotoxins (ast, alt and act/aerA/hlyA), flagellin subunits (flaA/flaB), lipase (lip/pla/lipH3/alp-1) and elastase (ahyB) by PCR. The majority (90%) of the Aeromonas strains included one or more of the six screened Aeromonas virulence gene types. The most common gene type was act, which was present in 77% of the strains. The fla, ahyB and lip genes were present in 30 37% of the strains. The prevalence of the virulence genes implies that the Aeromonas may be a factor in some of the cyanobacterial associated health problems. Of the 183 isolated bacterial strains that were studied for possible effects on cyanobacterial growth, the majority (60%) either enhanced or inhibited growth of cyanobacteria. In most cases, they enhanced the growth, which implies mutualistic interactions. The results indicate that the heterotrophic bacteria have a role in the rise and fall of the cyanobacterial water blooms. The genetic and phenotypic characteristics and the ability to degrade cyanobacterial hepatotoxins of 13 previously isolated Betaproteobacteria strains, were also studied. The strains originated from Finnish lakes with frequent cyanobacterial occurrence. Tested strains degraded microcystins -LR and -YR and nodularin. The strains could not be assigned to any described bacterial genus or species based on their genetic or phenotypic features. On the basis of their characteristics a new genus and species Paucibacter toxinivorans was proposed for them. The water purification efficiency of the drinking water treatment processes during cyanobacterial water bloom in water source was assessed at an operating surface water treatment plant. Large phytoplankton, cyanobacterial hepatotoxins, endotoxins and cultivable heterotrophic bacteria were efficiently reduced to low concentrations, often below the detection limits. In contrast, small planktonic cells, including also possible bacterial cells, regularly passed though the water treatment. The passing cells may contribute to biofilm formation within the water distribution system, and therefore lower the obtained drinking water quality. The bacterial strains of this study offer a rich source of isolated strains for examining interactions between cyanobacteria and the heterotrophic bacteria associated with them. The degraders of cyanobacterial hepatotoxins could perhaps be utilized to assist the removal of the hepatotoxins during water treatment, whereas inhibitors of cyanobacterial growth might be useful in controlling cyanobacterial water blooms. The putative pathogenicity of the strains suggests that the health risk assessment of the cyanobacterial blooms should also cover the heterotrophic bacteria.
Resumo:
The hexahydrate of a 1:1 complex between L-histidyl-L-serine and glycyl-L-glutamic acid crystallizes in space group P1 with a = 4.706(1), b= 8.578(2), c= 16.521(3) ÅA; α= 85.9(1), β= 89.7(1)°, = 77.4(1). The crystal structure, solved by direct methods, has been refined to an R value of 0.046 for 2150 observed reflections. The two peptide molecules in the structure have somewhat extended conformations. The unlike molecules aggregate into separate alternating layers. Each layer is stabilized by hydrogen bonded head-to-tail sequences as well as sequences of hydrogen bonds involving peptide groups. The arrangement of molecules in each layer is similar to one of the plausible idealized arrangements of L-alanyl-L-alanine worked out from simple geometrical considerations. Adjacent layers in the structure are held together by interactions involving side chains as well as water molecules. The water structure observed in the complex provides a good model, at atomic resolution, for that in protein crystals. An interesting feature of the crystal structure is the existence of two water channels in the interfaces between adjacent peptide layers.
Resumo:
. The changes in the net amounts of retinol, retinyl esters and retinal in both the developing chick embryo and the newly hatched chick were investigated. The embryo requires about 68nmol of the vitamin for its growth, whereas the baby chick requires about 108nmol during the first 7 days after hatching. 2. Retinal was present in the egg in fairly high concentrations at the beginning of the incubation but it virtually disappeared from the extra-embryonic tissue after day 17 of incubation. It was not found in the liver of the embryo or of the newly hatched chick up until day 7.
Resumo:
The results of research into the water relations and irrigation requirements of lychee are collated and reviewed. The stages of plant development are summarised, with an emphasis on factors influencing the flowering process. This is followed by reviews of plant water relations, water requirements, water productivity and, finally, irrigation systems. The lychee tree is native to the rainforests of southern China and northern Vietnam, and the main centres of production remain close to this area. In contrast, much of the research on the water relations of this crop has been conducted in South Africa, Australia and Israel where the tree is relatively new. Vegetative growth occurs in a series of flushes. Terminal inflorescences are borne on current shoot growth under cool (<15 °C), dry conditions. Trees generally do not produce fruit in the tropics at altitudes below 300 m. Poor and erratic flowering results in low and irregular fruit yields. Drought can enhance flowering in locations with dry winters. Roots can extract water from depths greater than 2 m. Diurnal trends in stomatal conductance closely match those of leaf water status. Both variables mirror changes in the saturation deficit of the air. Very little research on crop water requirements has been reported. Crop responses to irrigation are complex. In areas with low rainfall after harvest, a moderate water deficit before floral initiation can increase flowering and yield. In contrast, fruit set and yield can be reduced by a severe water deficit after flowering, and the risk of fruit splitting increased. Water productivity has not been quantified. Supplementary irrigation in South-east Asia is limited by topography and competition for water from the summer rice crop, but irrigation is practised in Israel, South Africa, Australia and some other places. Research is needed to determine the benefits of irrigation in different growing areas. Copyright © Cambridge University Press 2013.
Resumo:
Two key quality traits in milling wheat are flour yield (FY) and water absorption (WA). Ideally, breeders would prefer to use markers to select promising lines rather than time consuming rheology tests. In this study, we measured FY and WA on a wheat mapping population (Lang/QT8766) of 162 individuals grown in two replicated field experiments at three locations over 2 years. We also carried out near infrared reflectance spectroscopy (NIRS) predictions on the grain for these traits to see if NIRS phenotypic data could provide useful mapping results when compared to the reference phenotypic data. Several common QTLs were identified for FY and WA by both sets of data. The QTL on chromosome 4D was a consistently recurring QTL region for both traits. The QTL on chromosome 2A was positively linked to protein content which was supported by genetic correlation data. The results also indicated it was possible to obtain useful phenotypic data for mapping FY and WA using NIRS data. This would save time and costs as NIRS is quicker and cheaper than current rheology methods.
Resumo:
The identification of "stay-green" in sorghum and its positive correlation with yield increases has encouraged attempts to incorporate "stay-green"-like traits into the genomes of other commercially important cereal crops. However, knowledge on the effects of "stay-green" expression on grain quality under extreme physiological stress is limited. This study examines impacts of "stay-green"-like expression on starch biosynthesis in barley (Hordeum vulgare L.) grain under mild, severe, and acute water stress conditions induced at anthesis. The proportions of long amylopectin branches and amylose branches in the grain of Flagship (a cultivar without "stay-green"-like characteristics) were higher at low water stress, suggesting that water stress affects starch biosynthesis in grain, probably due to early termination of grain fill. The changes in long branches can affect starch properties, such as the rates of enzymatic degradation, and hence its nutritional value. By contrast, grain from the "stay-green"-like cultivar (ND24260) did not show variation in starch molecular structure under the different water stress levels. The results indicate that the cultivar with "stay-green"-like traits has a greater potential to maintain starch biosynthesis and quality in grain during drought conditions, making the "stay-green"-like traits potentially useful in ensuring food security. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Beef cattle grazing is the dominant land use in the extensive tropical and sub-tropical rangelands of northern Australia. Despite the considerable knowledge on land and herd management gained from both research and practical experience, the adoption of improved management is limited by an inability to predict how changes in practices and combinations of practices will affect cattle production, economic returns and resource condition. To address these issues, past Australian and international research relating to four management factors that affect productivity and resource condition was reviewed in order to identify key management principles. The four management factors considered were stocking rates, pasture resting, prescribed fire, and fencing and water point development for managing grazing distribution. Four management principles for sound grazing management in northern Australia were formulated as follows: (1) manage stocking rates to meet goals for livestock production and land condition; (2) rest pastures to maintain them in good condition or to restore them from poor condition to increase pasture productivity; (3) devise and apply fire regimes that enhance the condition of grazing land and livestock productivity while minimising undesirable impacts; and (4) use fencing and water points to manipulate grazing distribution. Each principle is supported by several more specific guidelines. These principles and guidelines, and the supporting research on which they are based, are presented.
Resumo:
Purpose We investigated the effects of weed control and fertilization at early establishment on foliar stable carbon (δ13C) and nitrogen (N) isotope (δ15N) compositions, foliar N concentration, tree growth and biomass, relative weed cover and other physiological traits in a 2-year old F1 hybrid (Pinus elliottii var. elliottii (Engelm) × Pinus caribaea var. hondurensis (Barr. ex Golf.)) plantation grown on a yellow earth in southeast Queensland of subtropical Australia. Materials and methods Treatments included routine weed control, luxury weed control, intermediate weed control, mechanical weed control, nil weed control, and routine and luxury fertilization in a randomised complete block design. Initial soil nutrition and soil fertility parameters included (hot water extractable organic carbon (C) and total nitrogen (N), total C and N, C/N ratio, labile N pools (nitrate (NO3 −) and ammonium (NH4 +)), extractable potassium (K+)), soil δ15N and δ13C. Relative weed cover, foliar N concentrations, tree growth rate and physiological parameters including photosynthesis, stomatal conductance, photosynthetic nitrogen use efficiency, foliar δ15N and foliar δ13C were also measured at early establishment. Results and discussion Foliar N concentration at 1.25 years was significantly different amongst the weed control treatments and was negatively correlated to the relative weed cover at 1.1 years. Foliar N concentration was also positively correlated to foliar δ15N and foliar δ13C, tree height, height growth rates and tree biomass. Foliar δ15N was negatively correlated to the relative weed cover at 0.8 and 1.1 years. The physiological measurements indicated that luxury fertilization and increasing weed competition on these soils decreased leaf xylem pressure potential (Ψxpp) when compared to the other treatments. Conclusions These results indicate how increasing N resources and weed competition have implications for tree N and water use at establishment in F1 hybrid plantations of southeast Queensland, Australia. These results suggest the desirability of weed control, in the inter-planting row, in the first year to maximise site N and water resources available for seedling growth. It also showed the need to avoid over-fertilisation, which interfered with the balance between available N and water on these soils.
Resumo:
Water-ethanol mixtures are commonly used in industry and house holds. However, quite surprisingly their molecular-level structure is still not completely understood. In particular, there is evidence that the local intermolecular geometries depend significantly on the concentration. The aim of this study was to gain information on the molecular-level structures of water-ethanol mixtures by two computational methods. The methods are classical molecular dynamics (MD), where the movement of molecules can be studied, and x-ray Compton scattering, in which the scattering cross section is sensitive to the electron momentum density. Firstly, the water-ethanol mixtures were studied with MD simulations, with the mixture concentration ranging from 0 to 100%. For the simulations well-established force fields were used for the water and ethanol molecules (TIP4P and OPLS-AA, respectively). Moreover, two models were used for ethanol, rigid and non-rigid. In the rigid model the intramolecular bond lengths are fixed, whereas in the non-rigid model the lengths are determined by harmonic potentials. Secondly, mixtures with three different concentrations employing both ethanol models were studied by calculating the experimentally observable x-ray quantity, the Compton profile. In the MD simulations a slight underestimation in the density was observed as compared to experiment. Furthermore, a positive excess of hydrogen bonding with water molecules and a negative one with ethanol was quantified. Also, the mixture was found more structured when the ethanol concentration was higher. Negligible differences in the results were found between the two ethanol models. In contrast, in the Compton scattering results a notable difference between the ethanol models was observed. For the rigid model the Compton profiles were similar for all the concentrations, but for the non-rigid model they were distinct. This leads to two possibilities of how the mixing occurs. Either the mixing is similar in all concentrations (as suggested by the rigid model) or the mixing changes for different concentrations (as suggested by the non-rigid model). Either way, this study shows that the choice of the force field is essential in the microscopic structure formation in the MD simulations. When the sources of uncertainty in the calculated Compton profiles were analyzed, it was found that more statistics needs to be collected to reduce the statistical uncertainty in the final results. The obtained Compton scattering results can be considered somewhat preliminary, but clearly indicative of the behaviour of the water-ethanol mixtures when the force field is modified. The next step is to collect more statistics and compare the results with experimental data to decide which ethanol model describes the mixture better. This way, valuable information on the microscopic structure of water-ethanol mixtures can be found. In addition, information on the force fields in the MD simulations and on the ability of the MD simulations to reproduce the microscopic structure of binary liquids is obtained.
Resumo:
The molecular level structure of mixtures of water and alcohols is very complicated and has been under intense research in the recent past. Both experimental and computational methods have been used in the studies. One method for studying the intra- and intermolecular bindings in the mixtures is the use of the so called difference Compton profiles, which are a way to obtain information about changes in the electron wave functions. In the process of Compton scattering a photon scatters inelastically from an electron. The Compton profile that is obtained from the electron wave functions is directly proportional to the probability of photon scattering at a given energy to a given solid angle. In this work we develop a method to compute Compton profiles numerically for mixtures of liquids. In order to obtain the electronic wave functions necessary to calculate the Compton profiles we need some statistical information about atomic coordinates. Acquiring this using ab-initio molecular dynamics is beyond our computational capabilities and therefore we use classical molecular dynamics to model the movement of atoms in the mixture. We discuss the validity of the chosen method in view of the results obtained from the simulations. There are some difficulties in using classical molecular dynamics for the quantum mechanical calculations, but these can possibly be overcome by parameter tuning. According to the calculations clear differences can be seen in the Compton profiles of different mixtures. This prediction needs to be tested in experiments in order to find out whether the approximations made are valid.
Resumo:
Australian cotton (Gossypium hirsutum L.) is predominantly grown on heavy clay soils (Vertosols). Cotton grown on Vertosols often experiences episodes of low oxygen concentration in the root-zone, particularly after irrigation events. In subsurface drip-irrigation (SDI), cotton receives frequent irrigation and sustained wetting fronts are developed in the rhizosphere. This can lead to poor soil diffusion of oxygen, causing temporal and spatial hypoxia. As cotton is sensitive to waterlogging, exposure to this condition can result in a significant yield penalty. Use of aerated water for drip irrigation (‘oxygation’) can ameliorate hypoxia in the wetting front and, therefore, overcome the negative effects of poor soil aeration. The efficacy of oxygation, delivered via SDI to broadacre cotton, was evaluated over seven seasons (2005–06 to 2012–13). Oxygation of irrigation water by Mazzei air-injector produced significantly (P < 0.001) higher yields (200.3 v. 182.7 g m–2) and water-use efficiencies. Averaged over seven years, the yield and gross production water-use index of oxygated cotton exceeded that of the control by 10% and 7%, respectively. The improvements in yields and water-use efficiency in response to oxygation could be ascribed to greater root development and increased light interception by the crop canopies, contributing to enhanced crop physiological performance by ameliorating exposure to hypoxia. Oxygation of SDI contributed to improvements in both yields and water-use efficiency, which may contribute to greater economic feasibility of SDI for broadacre cotton production in Vertosols.
Resumo:
Maintaining a high rate of water uptake is crucial for maximum longevity of cut stems. Physiological gel/tylosis formation decreases water transport efficiency in the xylem. The primary mechanism of action for post-harvest Cu2+ treatments in improving cut flower and foliage longevity has been elusive. The effect of Cu2+ on wound-induced xylem vessel occlusion was investigated for Acacia holosericea A. Cunn. ex G. Don. Experiments were conducted using a Cu2+ pulse (5 h, 2.2 mM) and a Cu2+ vase solution (0.5 mM) vs a deionized water (DIW) control. Development of xylem blockage in the stem-end region 10 mm proximal to the wounded stem surface was examined over 21 days by light and transmission electron microscopy. Xylem vessels of stems stood into DIW were occluded with gels secreted into vessel lumens via pits from surrounding axial parenchyma cells. Gel secretion was initiated within 1-2 days post-wounding and gels were detected in the xylem from day 3. In contrast, Cu2+ treatments disrupted the surrounding parenchyma cells, thereby inhibiting gel secretion and maintaining the vessel lumens devoid of occlusions. The Cu2+ treatments significantly improved water uptake by the cut stems as compared to the control. © 2013 Scandinavian Plant Physiology Society.
Resumo:
The aim of this review is to report changes in irrigated cotton water use from research projects and on-farm practice-change programs in Australia, in relation to both plant-based and irrigation engineering disciplines. At least 80% of the Australian cotton-growing area is irrigated using gravity surface-irrigation systems. This review found that, over 23 years, cotton crops utilise 6-7ML/ha of irrigation water, depending on the amount of seasonal rain received. The seasonal evapotranspiration of surface-irrigated crops averaged 729mm over this period. Over the past decade, water-use productivity by Australian cotton growers has improved by 40%. This has been achieved by both yield increases and more efficient water-management systems. The whole-farm irrigation efficiency index improved from 57% to 70%, and the crop water use index is >3kg/mm.ha, high by international standards. Yield increases over the last decade can be attributed to plant-breeding advances, the adoption of genetically modified varieties, and improved crop management. Also, there has been increased use of irrigation scheduling tools and furrow-irrigation system optimisation evaluations. This has reduced in-field deep-drainage losses. The largest loss component of the farm water balance on cotton farms is evaporation from on-farm water storages. Some farmers are changing to alternative systems such as centre pivots and lateral-move machines, and increasing numbers of these alternatives are expected. These systems can achieve considerable labour and water savings, but have significantly higher energy costs associated with water pumping and machine operation. The optimisation of interactions between water, soils, labour, carbon emissions and energy efficiency requires more research and on-farm evaluations. Standardisation of water-use efficiency measures and improved water measurement techniques for surface irrigation are important research outcomes to enable valid irrigation benchmarks to be established and compared. Water-use performance is highly variable between cotton farmers and farming fields and across regions. Therefore, site-specific measurement is important. The range in the presented datasets indicates potential for further improvement in water-use efficiency and productivity on Australian cotton farms.