911 resultados para urine reagent strip
Resumo:
A new analogue of vitamin A, viz., retinoic acid anhydride was prepared, for the first time, by the action of thionyl chloride on retinoic acid in benzene containing pyridine. The amhydride was charcterised by its chromatographic properties, elemental analysis, ultraviolet absorption, infrared and nuclear magnetic resonance spectral characteristics. The compound could be readily hydrolysed to retinoic acid both by acid and alkali treatments and reduced by lithium aluminium hydride to vitamin A alcohol (retinol). The spectral changes with antimony trichloride reagent were similar to those observed for retinoic acid. The metabolism of retinoic acid anhydride was found to be similar to that of retinoic acic. When administered either orally or intraperitoneally, the compound promotes growth in vitamin A-deficient rats. Time-course experiments revealed that retinoic acid anhydride is converted into retinoic acid by non-enzymatic hydrolysis and thereby exerts its biological activity. The biopotency of the anhydride was found to be nearly the same as that of the acid. A new method of preparing esters of retinoic acid employing retinoic acid anhydride as an intermediate, has been described.
Resumo:
The classical Rayleigh-Ritz method in conjunction with suitable co-ordinate transformations is found to be effective for accurate estimation of natural frequencies of circumferentially truncated circular sector plates with simply supported straight edges. Numerical results are obtained for all the nine combinations of clamped, simply supported and free boundary conditions at the circular edges and presented in the form of graphs. The analysis confirms an earlier observation that the plate behaves like a long rectangular strip as the width of the plate in the radial direction becomes small.
Resumo:
Escherichia coli sequence type 131 (ST131) have emerged as a pandemic lineage of important multidrug resistant pathogens worldwide. Despite many studies examining the epidemiology of ST131, only a few studies to date have investigated the capacity of ST131 strains to form biofilms. Some of these studies have reported contrasting findings, with no specific ST131 biofilm-promoting factors identified. Here we examined a diverse collection of ST131 isolates for in vitro biofilm formation in different media and assay conditions, including urine from healthy adult women. We found significant differences among strains and assay conditions, which offers an explanation for the contrasting findings reported by previous studies using a single condition. Importantly, we showed that expression of type 1 fimbriae is a critical determinant for biofilm formation by ST131 strains and that inhibition of the FimH adhesin significantly reduces biofilm formation. We also offer direct genetic evidence for the contribution of type 1 fimbriae in biofilm formation by the reference ST131 strain EC958, a representative of the clinically dominant H30-Rx ST131 subgroup. This is the first study of ST131 biofilm formation in biologically relevant conditions and paves the way for the application of FimH inhibitors in treating drug resistant ST131 biofilm infections.
Resumo:
Plasma membrane adopts myriad of different shapes to carry out essential cellular processes such as nutrient uptake, immunological defence mechanisms and cell migration. Therefore, the details how different plasma membrane structures are made and remodelled are of the upmost importance. Bending of plasma membrane into different shapes requires substantial amount of force, which can be provided by the actin cytoskeleton, however, the molecules that regulate the interplay between the actin cytoskeleton and plasma membrane have remained elusive. Recent findings have placed new types of effectors at sites of plasma membrane remodelling, including BAR proteins, which can directly bind and deform plasma membrane into different shapes. In addition to their membrane-bending abilities, BAR proteins also harbor protein domains that intimately link them to the actin cytoskeleton. The ancient BAR domain fold has evolved into at least three structurally and functionally different sub-groups: the BAR, F-BAR and I-BAR domains. This thesis work describes the discovery and functional characterization of the Inverse-BAR domains (I-BARs). Using synthetic model membranes, we have shown that I-BAR domains bind and deform membranes into tubular structures through a binding-surface composed of positively charged amino acids. Importantly, the membrane-binding surface of I-BAR domains displays an inverse geometry to that of the BAR and F-BAR domains, and these structural differences explain why I-BAR domains induce cell protrusions whereas BAR and most F-BAR domains induce cell invaginations. In addition, our results indicate that the binding of I-BAR domains to membranes can alter the spatial organization of phosphoinositides within membranes. Intriguingly, we also found that some I-BAR domains can insert helical motifs into the membrane bilayer, which has important consequences for their membrane binding/bending functions. In mammals there are five I-BAR domain containing proteins. Cell biological studies on ABBA revealed that it is highly expressed in radial glial cells during the development of the central nervous system and plays an important role in the extension process of radial glia-like C6R cells by regulating lamellipodial dynamics through its I-BAR domain. To reveal the role of these proteins in the context of animals, we analyzed MIM knockout mice and found that MIM is required for proper renal functions in adult mice. MIM deficient mice displayed a severe urine concentration defect due to defective intercellular junctions of the kidney epithelia. Consistently, MIM localized to adherens junctions in cultured kidney epithelial cells, where it promoted actin assembly through its I-BAR andWH2 domains. In summary, this thesis describes the mechanism how I-BAR proteins deform membranes and provides information about the biological role of these proteins, which to our knowledge are the first proteins that have been shown to directly deform plasma membrane to make cell protrusions.
Resumo:
A method based on an assumption that the radial bending moment is zero at a nodal circle is shown to yield accurate estimates of natural frequencies corresponding to higher modes of transversely vibrating polar orthotropic annular plates for various combinations of clamped, simply supported and free edge conditions. This method is found to be convenient for the determination of locations of nodal circles as well. Numerical investigations revealed that for small holes, nodal circles tend to move towards the outer edge with increasing number of nodal diameters. For large holes, it has been shown that the plate behaves like a long rectangular strip.
Resumo:
We report the formation of dynamic, reversible cross-linked dendritic megamers and their dissociation to monomeric dendrimers, through a thiol-disulfide interchange reaction. For this study, poly(alkyl aryl ether) dendrimers up to three-generations presenting thiol functionalities, were prepared. The series from zero to three generations of dendrimers were installed with 3, 6, 12, and 24 thiol functionalities at their peripheries. Upon synthesis, cross-linking of the dendrimer was accomplished through disulfide bond formation. The cross-linking of dendrimers was monitored through optical density changes at 420 nm. Dense cross-linking led to visible precipitation of dendritic megamers and the morphologies of the megamers were characterized by transmission electron microscopy. The disulfide cross-links between megamer monomers could be dissociated readily upon reduction of disulfide bond by dithiothreitol reagent. Preliminary studies show that dendritic megamers encapsulate C-60 and the efficiency of encapsulation increased with increasing generation of dendritic megamer.
Resumo:
Direct synthesis of unsymmetrical beta-sulfonamido disulfides by ring-opening of aziridines by using benzyltriethyl-ammonium tetrathiomolybdate 1 as a sulfur transfer reagent in the presence of symmetrical disulfides as thiol equivalents has been reported. Reaction of benzyl and alkyl disulfides gave unsymmetrical beta-sulfonamido disulfides as the only product in very good yields. From the Study, it has been observed that aryl disulfides containing p-NO2, p-Cl, and p-CN led to the formation of the corresponding beta-aminosulfides as the exclusive products. However, un-substituted aryl disulfides and the one containing electron-donating substituents (p-Me) provide a mixture of beta-sulfonamido mono- and disulfides as the products.
Resumo:
Metabolic fate of menthofuran (II) in rats was investigated. Menthofuran (II) was administered orally (200 mg/kg of the body weight/day) to rats for 3 days. The following metabolites were isolated from the urine of these animals: p-cresol (VI), 5-methyl-2-cyclohexen-1- one (VII), 3-methylcyclohexanone (VIII), 3-methylcyclohexanol (IX), 4- hydroxy-4-methyl-2-cyclohexen-1-one (V), geranic acid (XI), neronic acid (XII), benzoic acid (XIII), and 2-[2'-keto-4'- methylcyclohexyl]propionic acid (X). Incubation of menthofuran (II) with phenobarbital-induced rat liver microsomes in the presence of NADPH and oxygen resulted in the formation of a metabolite tentatively identified as 2-Z-(2'-keto-4'-methylcyclohexylidene)propanal (III; alpha,beta-unsaturated-gamma-keto-aldehyde). The structure assigned was further supported by trapping this metabolite (III) as a cinnoline derivative. Phenobarbital-induced rat liver microsomes also converted 4- methyl-2-cyclohexenone (IV) to 4-hydroxy-4-methyl-2-cyclohexenone (V) and p-cresol (VI) in the presence of NADPH and oxygen. On the basis of both in vivo and in vitro studies, a possible mechanism for the formation of p-cresol from menthofuran has been proposed.
Resumo:
Effect of sonochemical irradiation on the conversion of 2-alkoxytetrahydrofurans to γ-butyro-1actores by Jones reagent, and its extension to the highly stereoselective synthesis of quercus lactone a, is reported.
Resumo:
The glomerular epithelial cells and their intercellular junctions, termed slit diaphragms, are essential components of the filtration barrier in the kidney glomerulus. Nephrin is a transmembrane adhesion protein of the slit diaphragm and a signalling molecule regulating podocyte physiology. In congenital nephrotic syndrome of the Finnish type, mutation of nephrin leads to disruption of the permeability barrier and leakage of plasma proteins into the urine. This doctoral thesis hypothesises that novel nephrin-associated molecules are involved in the function of the filtration barrier in health and disease. Bioinformatics tools were utilized to identify novel nephrin-like molecules in genomic databases, and their distribution in the kidney and other tissues was investigated. Filtrin, a novel nephrin homologue, is expressed in the glomerular podocytes and, according to immunoelectron microscopy, localizes at the slit diaphragm. Interestingly, the nephrin and filtrin genes, NPHS1 and KIRREL2, locate in a head-to-head orientation on chromosome 19q13.12. Another nephrin-like molecule, Nphs1as was cloned in mouse, however, no expression was detected in the kidney but instead in the brain and lymphoid tissue. Notably, Nphs1as is transcribed from the nephrin locus in an antisense orientation. The glomerular mRNA and protein levels of filtrin were measured in kidney biopsies of patients with proteinuric diseases, and marked reduction of filtrin mRNA levels was detected in the proteinuric samples as compared to controls. In addition, altered distribution of filtrin in injured glomeruli was observed, with the most prominent decrease of the expression in focal segmental glomerulosclerosis. The role of the slit diaphragm-associated genes for the development of diabetic nephropathy was investigated by analysing single nucleotide polymorphisms. The genes encoding filtrin, densin-180, NEPH1, podocin, and alpha-actinin-4 were analysed, and polymorphisms at the alpha-actinin-4 gene were associated with diabetic nephropathy in a gender-dependent manner. Filtrin is a novel podocyte-expressed protein with localization at the slit diaphragm, and the downregulation of filtrin seems to be characteristic for human proteinuric diseases. In the context of the crucial role of nephrin for the glomerular filter, filtrin appears to be a potential candidate molecule for proteinuria. Although not expressed in the kidney, the nephrin antisense Nphs1as may regulate the expression of nephrin in extrarenal tissues. The genetic association analysis suggested that the alpha-actinin-4 gene, encoding an actin-filament cross-linking protein of the podocytes, may contribute to susceptibility for diabetic nephropathy.
Resumo:
Lidocaine is a widely used local anaesthetic agent that also has anti-arrhythmic effects. It is classified as a type Ib anti-arrhythmic agent and is used to treat ventricular tachycardia or ventricular fibrillation. Lidocaine is eliminated mainly by metabolism, and less than 5% is excreted unchanged in urine. Lidocaine is a drug with a medium to high extraction ratio, and its bioavailability is about 30%. Based on in vitro studies, the earlier understanding was that CYP3A4 is the major cytochrome P450 (CYP) enzyme involved in the metabolism of lidocaine. When this work was initiated, there was little human data on the effect of inhibitors of CYP enzymes on the pharmacokinetics of lidocaine. Because lidocaine has a low therapeutic index, medications that significantly inhibit lidocaine clearance (CL) could increase the risk of toxicity. These studies investigated the effects of some clinically important CYP1A2 and CYP3A4 inhibitors on the pharmacokinetics of lidocaine administered by different routes. All of the studies were randomized, double-blind, placebo-controlled cross-over studies in two or three phases in healthy volunteers. Pretreatment with clinically relevant doses of CYP3A4 inhibitors erythromycin and itraconazole or CYP1A2 inhibitors fluvoxamine and ciprofloxacin was followed by a single dose of lidocaine. Blood samples were collected to determine the pharmacokinetic parameters of lidocaine and its main metabolites monoethylglycinexylidide (MEGX) and 3-hydroxylidocaine (3-OH-lidocaine). Itraconazole and erythromycin had virtually no effect on the pharmacokinetics of intravenous lidocaine, but erythromycin slightly prolonged the elimination half-life (t½) of lidocaine (Study I). When lidocaine was taken orally, both erythromycin and itraconazole increased the peak concentration (Cmax) and the area under the concentration-time curve (AUC) of lidocaine by 40-70% (Study II). Compared with placebo and itraconazole, erythromycin increased the Cmax and the AUC of MEGX by 40-70% when lidocaine was given intravenously or orally (Studies I and II). The pharmacokinetics of inhaled lidocaine was unaffected by concomitant administration of itraconazole (Study III). Fluvoxamine reduced the CL of intravenous lidocaine by 41% and prolonged the t½ of lidocaine by 35%. The mean AUC of lidocaine increased 1.7-fold (Study IV). After oral administration of lidocaine, the mean AUC of lidocaine in-creased 3-fold and the Cmax 2.2-fold by fluvoxamine (Study V). During the pretreatment with fluvoxamine combined with erythromycin, the CL of intravenous lidocaine was 53% smaller than during placebo and 21% smaller than during fluvoxamine alone. The t½ of lidocaine was significantly longer during the combination phase than during the placebo or fluvoxamine phase. The mean AUC of intravenous lidocaine increased 2.3-fold and the Cmax 1.4-fold (Study IV). After oral administration of lidocaine, the mean AUC of lidocaine increased 3.6-fold and the Cmax 2.5-fold by concomitant fluvoxamine and erythromycin. The t½ of oral lidocaine was significantly longer during the combination phase than during the placebo (Study V). When lidocaine was given intravenously, the combination of fluvoxamine and erythromycin prolonged the t½ of MEGX by 59% (Study IV). Compared with placebo, ciprofloxacin increased the mean Cmax and AUC of intravenous lidocaine by 12% and 26%, respectively. The mean plasma CL of lidocaine was reduced by 22% and its t½ prolonged by 7% (Study VI). These studies clarify the principal role of CYP1A2 and suggest only a modest role of CYP3A4 in the elimination of lidocaine in vivo. The inhibition of CYP1A2 by fluvoxamine considerably reduces the elimination of lidocaine. Concomitant use of fluvoxamine and the CYP3A4 inhibitor erythromycin further increases lidocaine concentrations. The clinical implication of this work is that clinicians should be aware of the potentially increased toxicity of lidocaine when used together with inhibitors of CYP1A2 and particularly with the combination of drugs inhibiting both CYP1A2 and CYP3A4 enzymes.
Resumo:
Background The estimated likelihood of lower limb amputation is 10 to 30 times higher amongst people with diabetes compared to those without diabetes. Of all non-traumatic amputations in people with diabetes, 85% are preceded by a foot ulcer. Foot ulceration associated with diabetes (diabetic foot ulcers) is caused by the interplay of several factors, most notably diabetic peripheral neuropathy (DPN), peripheral arterial disease (PAD) and changes in foot structure. These factors have been linked to chronic hyperglycaemia (high levels of glucose in the blood) and the altered metabolic state of diabetes. Control of hyperglycaemia may be important in the healing of ulcers. Objectives To assess the effects of intensive glycaemic control compared to conventional control on the outcome of foot ulcers in people with type 1 and type 2 diabetes. Search methods In December 2015 we searched: The Cochrane Wounds Specialised Register; The Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library); Ovid MEDLINE; Ovid MEDLINE (In-Process & Other Non-Indexed Citations); Ovid EMBASE; EBSCO CINAHL; Elsevier SCOPUS; ISI Web of Knowledge Web of Science; BioMed Central and LILACS. We also searched clinical trial databases, pharmaceutical trial databases and current international and national clinical guidelines on diabetes foot management for relevant published, non-published, ongoing and terminated clinical trials. There were no restrictions based on language or date of publication or study setting. Selection criteria Published, unpublished and ongoing randomised controlled trials (RCTs) were considered for inclusion where they investigated the effects of intensive glycaemic control on the outcome of active foot ulcers in people with diabetes. Non randomised and quasi-randomised trials were excluded. In order to be included the trial had to have: 1) attempted to maintain or control blood glucose levels and measured changes in markers of glycaemic control (HbA1c or fasting, random, mean, home capillary or urine glucose), and 2) documented the effect of these interventions on active foot ulcer outcomes. Glycaemic interventions included subcutaneous insulin administration, continuous insulin infusion, oral anti-diabetes agents, lifestyle interventions or a combination of these interventions. The definition of the interventional (intensive) group was that it should have a lower glycaemic target than the comparison (conventional) group. Data collection and analysis All review authors independently evaluated the papers identified by the search strategy against the inclusion criteria. Two review authors then independently reviewed all potential full-text articles and trials registry results for inclusion. Main results We only identified one trial that met the inclusion criteria but this trial did not have any results so we could not perform the planned subgroup and sensitivity analyses in the absence of data. Two ongoing trials were identified which may provide data for analyses in a later version of this review. The completion date of these trials is currently unknown. Authors' conclusions The current review failed to find any completed randomised clinical trials with results. Therefore we are unable to conclude whether intensive glycaemic control when compared to conventional glycaemic control has a positive or detrimental effect on the treatment of foot ulcers in people with diabetes. Previous evidence has however highlighted a reduction in risk of limb amputation (from various causes) in people with type 2 diabetes with intensive glycaemic control. Whether this applies to people with foot ulcers in particular is unknown. The exact role that intensive glycaemic control has in treating foot ulcers in multidisciplinary care (alongside other interventions targeted at treating foot ulcers) requires further investigation.
Resumo:
Useiden lääkkeiden yhtäaikainen käyttö on nykyään hyvin yleistä, mikä lisää lääkeaineiden haitallisten yhteisvaikutusten riskiä. Lääkeaineiden poistumisessa elimistöstä ovat tärkeässä osassa niitä hajottavat (metaboloivat) maksan sytokromi P450 (CYP) entsyymit. Vasta aivan viime vuosina on havaittu, että CYP2C8-entsyymillä voi olla tärkeä merkitys mm. lääkeaineyhteisvaikutuksissa. Eräät lääkeaineet voivat estää (inhiboida) CYP2C8-entsyymin kautta tapahtuvaa metaboliaa. Tässä työssä selvitettiin CYP2C8-entsyymiä estävien lääkkeiden vaikutusta sellaisten lääkeaineiden pitoisuuksiin, joiden aikaisemman tiedon perusteella arveltiin metaboloituvan CYP2C8-välitteisesti. Näiden lääkeaineiden metaboliaa tutkittiin myös koeputkiolosuhteissa (in vitro -menetelmillä). Lisäksi CYP2C8-entsyymiä estävän lipidilääke gemfibrotsiilin yhteisvaikutusmekanismia tutkittiin selvittämällä interaktion säilymistä koehenkilöillä gemfibrotsiilin annostelun lopettamisen jälkeen. Yhteisvaikutuksia tutkittiin terveillä vapaaehtoisilla koehenkilöillä käyttäen vaihtovuoroista koeasetelmaa. Koehenkilöille annettiin CYP2C8-entsyymiä estävää lääkitystä muutaman päivän ajan ja tämän jälkeen kerta-annos tutkimuslääkettä. Koehenkilöiltä otettiin useita verinäytteitä, joista määritettiin lääkepitoisuudet nestekromatografisilla tai massaspektrometrisillä menetelmillä. Gemfibrotsiili nosti ripulilääke loperamidin pitoisuudet keskimäärin kaksinkertaiseksi. Gemfibrotsiili lisäsi, mutta vain hieman, kipulääke ibuprofeenin pitoisuuksia, eikä sillä ollut mitään vaikutusta unilääke tsopiklonin pitoisuuksiin toisin kuin aiemman kirjallisuuden perusteella oli odotettavissa. Toinen CYP2C8-estäjä, mikrobilääke trimetopriimi, nosti diabeteslääke pioglitatsonin pitoisuuksia keskimäärin noin 40 %. Gemfibrotsiili nosti diabeteslääke repaglinidin pitoisuudet 7-kertaiseksi ja tämä yhteisvaikutus säilyi lähes yhtä voimakkaana vielä 12 tunnin päähän viimeisestä gemfibrotsiiliannoksesta. Tehdyt havainnot ovat käytännön lääkehoidon kannalta merkittäviä ja ne selvittävät CYP2C8-entsyymin merkitystä useiden lääkkeiden metaboliassa. Gemfibrotsiilin tai muiden CYP2C8-entsyymiä estävien lääkkeiden yhteiskäyttö loperamidin kanssa voi lisätä loperamidin tehoa tai haittavaikutuksia. Toisaalta CYP2C8-entsyymin osuus tsopiklonin ja ibuprofeenin metaboliassa näyttää olevan pieni. Trimetopriimi nosti kohtalaisesti pioglitatsonin pitoisuuksia, ja kyseisten lääkkeiden yhteiskäyttö voi lisätä pioglitatsonin annosriippuvaisia haittavaikutuksia. Gemfibrotsiili-repaglinidi-yhteisvaikutuksen päämekanismi in vivo näyttää olevan CYP2C8-entsyymin palautumaton esto. Tämän vuoksi gemfibrotsiilin estovaikutus ja yhteisvaikutusriski säilyvät pitkään gemfibrotsiilin annostelun lopettamisen jälkeen, mikä tulee ottaa huomioon käytettäessä sitä CYP2C8-välitteisesti metaboloituvien lääkkeiden kanssa.
Resumo:
Cytomegalovirus (CMV) is a major cause of morbidity, costs and even mortality in organ transplant recipients. CMV may also enhance the development of chronic allograft nephropathy (CAN), which is the most important cause of graft loss after kidney transplantation. The evidence for the role of CMV in chronic allograft nephropathy is somewhat limited, and controversial results have also been reported. The aim of this study was to investigate the role of CMV in the pathogenesis of CAN. Material for the purpose of this study was available from altogether 70 kidney transplant recipients who received a kidney transplant between the years 1992-2000. CMV infection was diagnosed with pp65 antigenemia test or by viral culture from blood, urine, or both. CMV proteins were demonstrated in the kidney allograft biopsies by immunohistochemisrty and CMV-DNA by in situ hybridization. Cytokines, adhesion molecules, and growth factors were demonstrated from allograft biopsies by immunohistochemistry, and from urinary samples by ELISA-methods. CMV proteins were detectable in the 6-month protocol biopsies from 18/41 recipients with evidence of CMV infection. In the histopathological analysis of the 6-month protocol biopsies, presence of CMV in the allograft together with a previous history of acute rejection episodes was associated with increased arteriosclerotic changes in small arterioles. In urinary samples collected during CMV infection, excretion of TGF-β was significantly increased. In recipients with increased urinary excretion of TGF-β, increased interstitial fibrosis was recorded in the 6- month protocol biopsies. In biopsies taken after an active CMV infection, CMV persisted in the kidney allograft in 17/48 recipients, as CMV DNA or antigens were detected in the biopsies more than 2 months after the last positive finding in blood or urine. This persistence was associated with increased expression of TGF-β, PDGF, and ICAM-1 and with increased vascular changes in the allografts. Graft survival and graft function one and two years after transplantation were reduced in recipients with persistent intragraft CMV. Persistent intragraft CMV infection was also a risk factor for reduced graft survival in Cox regression analysis, and an independent risk factor for poor graft function one and two years after transplantation in logistic regression analysis. In conclusion, these results show that persistent intragraft CMV infection is detrimental to kidney allografts, causing increased expression of growth factors and increased vascular changes, leading to reduced graft function and survival. Effective prevention, diagnosis and treatment of CMV infections may a major factor in improving the long term survival of kidney allograft.
Resumo:
Pioglitazone is a thiazolidinedione compound used in the treatment of type 2 diabetes. It has been reported to be metabolised by multiple cytochrome P450 (CYP) enzymes, including CYP2C8, CYP2C9 and CYP3A4 in vitro. The aims of this work were to identify the CYP enzymes mainly responsible for the elimination of pioglitazone in order to evaluate its potential for in vivo drug interactions, and to investigate the effects of CYP2C8- and CYP3A4-inhibiting drugs (gemfibrozil, montelukast, zafirlukast and itraconazole) on the pharmacokinetics of pioglitazone in healthy volunteers. In addition, the effect of induction of CYP enzymes on the pharmacokinetics of pioglitazone in healthy volunteers was investigated, with rifampicin as a model inducer. Finally, the effect of pioglitazone on CYP2C8 and CYP3A enzyme activity was examined in healthy volunteers using repaglinide as a model substrate. Study I was conducted in vitro using pooled human liver microsomes (HLM) and human recombinant CYP isoforms. Studies II to V were randomised, placebo-controlled cross-over studies with 2-4 phases each. A total of 10-12 healthy volunteers participated in each study. Pretreatment with clinically relevant doses with the inhibitor or inducer was followed by a single dose of pioglitazone or repaglinide, whereafter blood and urine samples were collected for the determination of drug concentrations. In vitro, the elimination of pioglitazone (1 µM) by HLM was markedly inhibited, in particular by CYP2C8 inhibitors, but also by CYP3A4 inhibitors. Of the recombinant CYP isoforms, CYP2C8 metabolised pioglitazone markedly, and CYP3A4 also had a significant effect. All of the tested CYP2C8 inhibitors (montelukast, zafirlukast, trimethoprim and gemfibrozil) concentration-dependently inhibited pioglitazone metabolism in HLM. In humans, gemfibrozil raised the area under the plasma concentration-time curve (AUC) of pioglitazone 3.2-fold (P < 0.001) and prolonged its elimination half-life (t½) from 8.3 to 22.7 hours (P < 0.001), but had no significant effect on its peak concentration (Cmax) compared with placebo. Gemfibrozil also increased the excretion of pioglitazone into urine and reduced the ratios of the active metabolites M-IV and M-III to pioglitazone in plasma and urine. Itraconazole had no significant effect on the pharmacokinetics of pioglitazone and did not alter the effect of gemfibrozil on pioglitazone pharmacokinetics. Rifampicin decreased the AUC of pioglitazone by 54% (P < 0.001) and shortened its dominant t½ from 4.9 to 2.3 hours (P < 0.001). No significant effect on Cmax was observed. Rifampicin also decreased the AUC of the metabolites M-IV and M-III, shortened their t½ and increased the ratios of the metabolite to pioglitazone in plasma and urine. Montelukast and zafirlukast did not affect the pharmacokinetics of pioglitazone. The pharmacokinetics of repaglinide remained unaffected by pioglitazone. These studies demonstrate the principal role of CYP2C8 in the metabolism of pioglitazone in humans. Gemfibrozil, an inhibitor of CYP2C8, increases and rifampicin, an inducer of CYP2C8 and other CYP enzymes, decreases the plasma concentrations of pioglitazone, which can necessitate blood glucose monitoring and adjustment of pioglitazone dosage. Montelukast and zafirlukast had no effects on the pharmacokinetics of pioglitazone, indicating that their inhibitory effect on CYP2C8 is negligible in vivo. Pioglitazone did not increase the plasma concentrations of repaglinide, indicating that its inhibitory effect on CYP2C8 and CYP3A4 is very weak in vivo.