956 resultados para methods: laboratory
Resumo:
Computational neuroscience aims to elucidate the mechanisms of neural information processing and population dynamics, through a methodology of incorporating biological data into complex mathematical models. Existing simulation environments model at a particular level of detail; none allow a multi-level approach to neural modelling. Moreover, most are not engineered to produce compute-efficient solutions, an important issue because sufficient processing power is a major impediment in the field. This project aims to apply modern software engineering techniques to create a flexible high performance neural modelling environment, which will allow rigorous exploration of model parameter effects, and modelling at multiple levels of abstraction.
Resumo:
Materials, methods and systems are provided for the purifn., filtration and/or sepn. of certain mols. such as certain size biomols. Certain embodiments relate to supports contg. at least one polymethacrylate polymer engineered to have certain pore diams. and other properties, and which can be functionally adapted to for certain purifications, filtrations and/or sepns. Biomols. are selected from a group consisting of: polynucleotide mols., oligonucleotide mols. including antisense oligonucleotide mols. such as antisense RNA and other oligonucleotide mols. that are inhibitory of gene function such as small interfering RNA (siRNA), polypeptides including proteinaceous infective agents such as prions, for example, the infectious agent for CJD, and infectious agents such as viruses and phage.
Resumo:
This paper reports on two lengthy studies in Physical education teacher education (PETE) conducted independently but which are epistemologically and methodologically linked. The paper describes how personal construct theory (PCT) and its associated methods provided a means for PETE students to reflexively construct their ideas about teaching physical education over an extended period. Data are drawn from each study in the form of a story of a single participant to indicate how this came about. Furthermore we suggest that PCT might be both a useful research strategy and an effective approach to facilitate professional development in a teacher education setting.
Resumo:
In this thesis a new approach for solving a certain class of anomalous diffusion equations was developed. The theory and algorithms arising from this work will pave the way for more efficient and more accurate solutions of these equations, with applications to science, health and industry. The method of finite volumes was applied to discretise the spatial derivatives, and this was shown to outperform existing methods in several key respects. The stability and convergence of the new method were rigorously established.
Resumo:
This thesis develops a novel approach to robot control that learns to account for a robot's dynamic complexities while executing various control tasks using inspiration from biological sensorimotor control and machine learning. A robot that can learn its own control system can account for complex situations and adapt to changes in control conditions to maximise its performance and reliability in the real world. This research has developed two novel learning methods, with the aim of solving issues with learning control of non-rigid robots that incorporate additional dynamic complexities. The new learning control system was evaluated on a real three degree-of-freedom elastic joint robot arm with a number of experiments: initially validating the learning method and testing its ability to generalise to new tasks, then evaluating the system during a learning control task requiring continuous online model adaptation.
Resumo:
Integration of biometrics is considered as an attractive solution for the issues associated with password based human authentication as well as for secure storage and release of cryptographic keys which is one of the critical issues associated with modern cryptography. However, the widespread popularity of bio-cryptographic solutions are somewhat restricted by the fuzziness associated with biometric measurements. Therefore, error control mechanisms must be adopted to make sure that fuzziness of biometric inputs can be sufficiently countered. In this paper, we have outlined such existing techniques used in bio-cryptography while explaining how they are deployed in different types of solutions. Finally, we have elaborated on the important facts to be considered when choosing appropriate error correction mechanisms for a particular biometric based solution.
Resumo:
We aim to design strategies for sequential decision making that adjust to the difficulty of the learning problem. We study this question both in the setting of prediction with expert advice, and for more general combinatorial decision tasks. We are not satisfied with just guaranteeing minimax regret rates, but we want our algorithms to perform significantly better on easy data. Two popular ways to formalize such adaptivity are second-order regret bounds and quantile bounds. The underlying notions of 'easy data', which may be paraphrased as "the learning problem has small variance" and "multiple decisions are useful", are synergetic. But even though there are sophisticated algorithms that exploit one of the two, no existing algorithm is able to adapt to both. In this paper we outline a new method for obtaining such adaptive algorithms, based on a potential function that aggregates a range of learning rates (which are essential tuning parameters). By choosing the right prior we construct efficient algorithms and show that they reap both benefits by proving the first bounds that are both second-order and incorporate quantiles.
Resumo:
Internationally there is interest in developing the research skills of pre-service teachers as a means of ongoing professional renewal with a distinct need for systematic and longitudinal investigation of student learning. The current study takes a unique perspective by exploring the research learning journey of pre-service teachers participating in a transnational degree programme. Using a case-study design that includes both a self-reported and direct measure of research knowledge, the results indicate a progression in learning, as well as evidence that this research knowledge is continued or maintained when the pre-service teachers return to their home university. The findings of this study have implications for both pre-service teacher research training and transnational programmes.
Resumo:
Nowadays, demand for automated Gas metal arc welding (GMAW) is growing and consequently need for intelligent systems is increased to ensure the accuracy of the procedure. To date, welding pool geometry has been the most used factor in quality assessment of intelligent welding systems. But, it has recently been found that Mahalanobis Distance (MD) not only can be used for this purpose but also is more efficient. In the present paper, Artificial Neural Networks (ANN) has been used for prediction of MD parameter. However, advantages and disadvantages of other methods have been discussed. The Levenberg–Marquardt algorithm was found to be the most effective algorithm for GMAW process. It is known that the number of neurons plays an important role in optimal network design. In this work, using trial and error method, it has been found that 30 is the optimal number of neurons. The model has been investigated with different number of layers in Multilayer Perceptron (MLP) architecture and has been shown that for the aim of this work the optimal result is obtained when using MLP with one layer. Robustness of the system has been evaluated by adding noise into the input data and studying the effect of the noise in prediction capability of the network. The experiments for this study were conducted in an automated GMAW setup that was integrated with data acquisition system and prepared in a laboratory for welding of steel plate with 12 mm in thickness. The accuracy of the network was evaluated by Root Mean Squared (RMS) error between the measured and the estimated values. The low error value (about 0.008) reflects the good accuracy of the model. Also the comparison of the predicted results by ANN and the test data set showed very good agreement that reveals the predictive power of the model. Therefore, the ANN model offered in here for GMA welding process can be used effectively for prediction goals.
Resumo:
Background: Overviews of systematic reviews (SRs) are useful for public health policy; however there is an absence of Cochrane Overviews covering public health (PH) topics. Objectives: We sought to analyze the methodological approaches used in existing Cochrane Overviews and Protocols for overviews (primarily clinical in nature), and compare these to the methods and approaches used in PH overviews (non-Cochrane). The intent was to identify issues that would be relevant for undertaking Cochrane overviews. Methods: We conducted a descriptive analysis of overviews published between 1999 and 2014. We searched the Cochrane Database of Systematic Reviews for Cochrane Protocols for overviews and Cochrane Overviews, and the HealthEvidence.org for PH overviews. The primary characteristics of the overviews and elements of the methodology were extracted and compared. Results: A total of 61 overviews of SRs were included in our analysis; specifically, this included 21 Cochrane Protocols for overviews, 15 Cochrane Overviews, and 27 non-Cochrane PH overviews. Amongst the overviews, the most significant differences are that PH overviews (non-Cochrane) tend to: include earlier and more reviews, greater number of participants, allow lower levels of evidence, use assessment tools other than AMSTAR (A Measurement Tool to Assess Systematic Reviews, i.e. a tool for assessing quality of SRs), not assess quality of evidence in reviews, search more databases overall, specify search limits including English-only reviews, and not consider recent primary studies for inclusion. Some of these differences clearly related to quality, however many relate to the nuances of PH interventions. Conclusions: The methodology in Cochrane overviews and PH overviews varies widely. Future PH overviews may benefit from the Cochrane methodology but the Cochrane approach requires modification to accommodate PH research methodology. Additionally, the use of databases that pre-screen and quality assess relevant PH systematic reviews may help expedite the search process.
Resumo:
Abstract Background A novel avian influenza A (H7N9) virus was first found in humans in Shanghai, and infected over 433 patients in China. To date, very little is known about the spatiotemporal variability or environmental drivers of the risk of H7N9 infection. This study explored the spatial and temporal variation of H7N9 infection and assessed the effects of temperature and rainfall on H7N9 incidence. Methods A Bayesian spatial conditional autoregressive (CAR) model was used to assess the spatiotemporal distribution of the risk of H7N9 infection in Shanghai, by district and fortnight for the period 19th February–14th April 2013. Data on daily laboratory-confirmed H7N9 cases, and weather variability including temperature (°C) and rainfall (mm) were obtained from the Chinese Information System for Diseases Control and Prevention and Chinese Meteorological Data Sharing Service System, respectively, and aggregated by fortnight. Results High spatial variations in the H7N9 risk were mainly observed in the east and centre of Shanghai municipality. H7N9 incidence rate was significantly associated with fortnightly mean temperature (Relative Risk (RR): 1.54; 95% credible interval (CI): 1.22–1.94) and fortnightly mean rainfall (RR: 2.86; 95% CI: 1.47–5.56). Conclusion There was a substantial variation in the spatiotemporal distribution of H7N9 infection across different districts in Shanghai. Optimal temperature and rainfall may be one of the driving forces for H7N9.
Resumo:
We performed a contingent valuation survey to elicit the opportunity cost of bed-days consumed by healthcare-associated infections in 11 European hospitals. The opportunity cost of a bed-day was significantly lower than the accounting cost; median values were i72 and i929, respectively (P ! .001). Accounting methods overestimate the opportunity cost of bed-days...
Resumo:
Aims: The Medical Imaging Training Immersive Environment(MITIE) Computed Tomography(CT) system is an innovative virtual reality (VR) platform that allows students to practice a range of CT techniques. The aim of this pilot study was to harvest user feedback about the educational value of teh application and inform future pedagogical development. This presentation explores the use of this technology for skills training. Background: MITIE CT is a 3D VR environment that allows students to position a patient,and set CT technical parameters including IV contrast dose and dose rate. As with VR initiatives in other health disciplines the software mimics clinical practice as much as possible and uses 3D technology to enhance immersion and realism. The software is new and was developed by the Medical Imaging Course Team at a provider University with funding from a Health Workforce Australia 'Simulated Learning Environments' grant Methods: Current third year medical imaging students were provided with additional 1 hour MITIE laboratory tutorials and studnet feedback was collated with regard to educational value and performance. Ethical approval for the project was provided by the university ethics panel Results: This presentation provides qualitative analysis of student perceptions relating to satisfaction, usability and educational value. Students reported high levels of satisfaction and both feedback and assessment results confirmed the application's significance as a pre-clinical tool. There was a clear emerging theme that MITIE could be a useful learning tool that students could access to consolidate their clinical learning, either on campus or during their clinical placement. Conclusion: Student feedback indicates that MITIE CT has a valuable role to play in the clinial skills training for medical imaging students both in the academic and clinical environment. Future work will establish a framework for an appropriate supprting pedagogy that can cross the boundary between the two environments