991 resultados para hyperbaric oxygen
Resumo:
Multiconfigurational Dirac-Fock calculations are reported for 656 energy levels and the 214 840 electric dipole (E I), electric quadrupole (E2) and magnetic dipole (M1) transition probabilities in oxygen-like Fe xix. The spectroscopic notations as well as the total transition probabilities from each energy level are provided. Good agreement is found with data compiled by NIST.
Resumo:
The equilibrium structure of ErOn (nless than or equal to6) complexes in crystalline silicon has been investigated by density-functional computations. Two different geometries have been considered, corresponding to the substitutional and tetrahedral interstitial site for erbium. All atomic coordinates have been optimized by Car-Parrinello molecular dynamics. The resulting structures have low symmetry, with E-O distances of similar to2.35 Angstrom. The substitutional site is the most stable one for nless than or equal to2, while the tetrahedral interstitial is favored for n>2.
Atomic oxygen surface loss coefficient measurements in a capacitive/inductive radio-frequency plasma
Resumo:
Spatially resolved measurements of the atomic oxygen densities close to a sample surface in a dual mode (capacitive/inductive) rf plasma are used to measure the atomic oxygen surface loss coefficient beta on stainless steel and aluminum substrates, silicon and silicon dioxide wafers, and on polypropylene samples. beta is found to be particularly sensitive to the gas pressure for both operating modes. It is concluded that this is due to the effect of changing atom and ion flux to the surface. (C) 2002 American Institute of Physics.
Resumo:
Measurements of electron capture and ionization of O-2 molecules in collisions with H+ and O+ ions have been made over an energy range 10 - 100 keV. Cross sections for dissociative and nondissociative interactions have been separately determined using coincidence techniques. Nondissociative channels leading to O-2(+) product formation are shown to be dominant for both the H+ and the O+ projectiles in the capture collisions and only for the H+ projectiles in the ionization collisions. Dissociative channels are dominant for ionizing collisions involving O+ projectiles. The energy distributions of the O+ fragment products from collisions involving H+ and O+ have also been measured for the first time using time-of-flight methods, and the results are compared with those from other related studies. These measurements have been used to describe the interaction of the energetic ions trapped in Jupiter's magnetosphere with the very thin oxygen atmosphere of the icy satellite Europa. It is shown that the ionization of oxygen molecules is dominated by charge exchange plus ion impact ionization processes rather than photoionization. In addition, dissociation is predominately induced through excitation of electrons into high-lying repulsive energy states ( electronically) rather than arising from momentum transfer from knock-on collisions between colliding nuclei, which are the only processes included in current models. Future modeling will need to include both these processes.
Resumo:
A one-electron oxidation of a methionine residue is thought to be a key step in the neurotoxicity of the beta amyloid peptide of Alzheimer's disease. The chemistry of the radical cation of N-formylmethioninamide (11+) and two model systems, dimethyl sulfide (1+) and ethyl methyl sulfide (6+), in the presence of oxygen have been studied by B3LYP/6-31G(d) and CBS-RAD calculations. The stable form of 11+ has a three-electron bond between the sulfur radical cation and the carbonyl oxygen atom of the i - 1 residue. The radical cation may lose a proton from the methyl or methylene groups flanking the oxidized sulfur. Both 11+ and the resultant C-centered radicals may add oxygen to form peroxy radicals. The calculations indicate that unlike C-centered radicals the sulfur radical cation does not form a covalent bond to oxygen but rather forms a loose ion-induced dipole complex with an S-O separation of about 2.7 Å, and is bound by about 13 kJ mol-1 (on the basis of 1+ + O2). Direct intramolecular abstraction of an H atom from the C site is unlikely. It is endothermic by more than 20 kJ mol-1 and involves a high barrier (G = 79 kJ mol-1). The -to-S C-centered radicals will add oxygen to form peroxy radicals. The OH BDEs of the parent hydroperoxides are in the range of 352-355 kJ mol-1, similar to SH BDEs (360 kJ mol-1) and C-H BDEs (345-350 kJ mol-1). Thus, the peroxy radicals are oxidizing species comparable in strength to thiyl radicals and peptide backbone C-centered radicals. Each peroxy radical can abstract a hydrogen atom from the backbone C site of the Met residue to yield the corresponding C-centered radical/hydroperoxide in a weakly exothermic process with modest barriers in the range of 64-92 kJ mol-1.
Resumo:
During recent reinvestigations in the Great Cave of Niah in Borneo, the ‘Hell Trench’ sedimentary sequence seen by earlier excavators was re-exposed. Early excavations here yielded the earliest anatomically-modern human remains in island Southeast Asia. Calibrated radiocarbon dates, pollen, algal microfossils, palynofacies, granulometry and geochemistry of the ‘Hell Trench’ sequence provide information about environmental and vegetational changes, elements of geomorphic history and information about human activity. The ‘Hell’ sediments were laid down episodically in an ephemeral stream or pool. The pollen suggests cyclically changing vegetation with forest habitats alternating with more open environments; indicating that phases with both temperatures and precipitation reduced compared with the present. These events can be correlated with global climate change sequences to produce a provisional dating framework. During some forest phases, high counts of Justicia, a plant which today colonises recently burnt forest areas, point to fire in the landscape. This may be evidence for biomass burning by humans, presumably to maintain forest-edge habitats. There is evidence from palynofacies for fire on the cave floor in the ‘Hell’ area. Since the area sampled is beyond the limit of plant growth, this is evidence for human activity. The first such evidence is during an episode with significant grassland indicators, suggesting that people may have reached the site during a climatic phase characterised by relatively open habitats ~50 ka. Thereafter, people were able to maintain a relatively consistent presence at Niah. The human use of the ‘Hell’ area seems to have intensified through time, probably because changes in the local hydrological regime made the area dryer and more suitable for human use.
Resumo:
In agroecosystems, most isotopic investigations of NO3- involve the use of tracers that are artificially enriched in 15N. Although the dual isotope composition of NO3-— d15N and d18O is especially beneficial for understanding the origin and fate of NO3-, its use for KCl-extractable soil NO3- has been hampered by the lack of a suitable analytical technique. Our objective was to test whether the denitrifier method, whereby NO3- is reduced to N2O before mass spectrometric analysis, can be used to determine the N and O isotopic composition of NO3- from 2 M KCl soil extracts. Several internationally accepted NO3- standards were dissolved in 2 M KCl, the conventional extractant for soil inorganic N, and inoculated with the bacterial strain Pseudomonas aureofaciens (ATCC no. 13985). The standard deviation of the NO3- standards analyzed did not exceed 0.2‰ for d15N and 0.3‰ for d18O values. After appropriate corrections, differences between our measured and consensus d15N and d18O values of standard NO3- generally were within the standard deviations given for the consensus values. Both d15N and d18O values were reproducible among separate analytical runs. The method was also tested on genuine 2 M KCl extracts from unfertilized and fertilized soils. Depending on N fertilization, the soils had distinct d15N and d18O values, which were attributed to amendment with NH4NO3 fertilizer. Hence, our data indicate that the denitrifier method provides a fast, reliable, precise, and accurate way of simultaneously analyzing the natural abundances of 15N and 18O in KCl-extractable soil NO3-.