822 resultados para green pods
Resumo:
[EN] The shoot density, leaf length and biomass of the seagrass Cymodocea nodosa (Ucria) Ascherson were found to severely decline in the last 17 years in the oceanic island of Gran Canaria (central Eastern Atlantic). Five seagrass meadows were sampled in summer and winter of 1994-1995 and in winter and summer 2011. The decrease in C. nodosa correlated with a 3-fold increase in the biomass of the green rhizophytic algae Caulerpa prolifera (Forsskål) J.V. Lamoroux over the same time period, although this increase varied notably among meadows. We also documented a negative correlation between the biomass of C. nodosa and C. prolifera at the island-scale, sampling 16 meadows in 2011. Experimental evidence demonstrated that C. prolifera can cause significant negative impacts on C. nodosa: plots with total (100%) removals of C. prolifera had ca. 2.5 more shoots and 3.5 times more biomass of C. nodosa, after 8 months, compared to plots with 50% removals and untouched control plots. Interference by C. prolifera appears to partially explain the decay in the abundance of C. nodosa populations in Gran Canaria. This study, however, did not identify potential underlying processes and/or environmental alterations that may have facilitated the disappearance of C. nodosa.
Resumo:
Máster Oficial en Gestión Costera
Resumo:
La rapida crescita di Internet e del numero di host connessi sta portando sempre di più alla nascita di nuove forme di tecnlogie ed applicazioni serverside, facendo del client un thin-client. Il Cloud Computing offre una valida piattaforma a queste nuove tecnologie, ma esso si deve confrontare con diverse problematiche, fra cui la richiesta energetica sempre più crescente, che si ripercuote su un'inevitabile aumento dei gas serra prodotti indirettamente. In questa tesi analizzeremo i problemi energetici legati al Cloud Computing e le possibili soluzioni, andando infine a creare una tassonomia fra i diversi Cloud Computing più importanti sul mercato attuale.
Resumo:
We assess the evidence for health benefits of three commonly consumed plant food supplements (PFS), green tea, isoflavone and aloe vera, based on published systematic reviews of randomised controlled trials (RCTs). Whilst the potential benefits of green tea have been reported in a wide range of health areas, it is only in the area of the metabolic syndrome that the number of RCTs is approaching sufficient to judge such efficacy. Isoflavone supplements are widely used, and RCTs indicate that they affect bone resorption at lower doses in postmenopausal women undergoing estrogen-related bone loss, but this is only translated to attenuation of bone loss at higher doses of isoflavones A systematic review on RCTs concluded that the effects of isoflavones
Resumo:
Quando si parla di green information technology si fa riferimento a un nuovo filone di ricerche focalizzate sulle tecnologie ecologiche o verdi rivolte al rispetto ambientale. In prima battuta ci si potrebbe chiedere quali siano le reali motivazioni che possono portare allo studio di tecnologie green nel settore dell’information technology: sono così inquinanti i computer? Non sono le automobili, le industrie, gli aerei, le discariche ad avere un impatto inquinante maggiore sull’ambiente? Certamente sì, ma non bisogna sottovalutare l’impronta inquinante settore IT; secondo una recente indagine condotta dal centro di ricerche statunitense Gartner nel 2007, i sistemi IT sono tra le maggiori fonti di emissione di CO2 e di altri gas a effetto serra , con una percentuale del 2% sulle emissioni totali del pianeta, eguagliando il tasso di inquinamento del settore aeromobile. Il numero enorme di computer disseminato in tutto il mondo assorbe ingenti quantità di energia elettrica e le centrali che li alimentano emettono tonnellate di anidride carbonica inquinando l’atmosfera. Con questa tesi si vuole sottolineare l’impatto ambientale del settore verificando, attraverso l’analisi del bilancio sociale ed ambientale, quali misure siano state adottate dai leader del settore informatico. La ricerca è volta a dimostrare che le più grandi multinazionali informatiche siano consapevoli dell’inquinamento prodotto, tuttavia non adottano abbastanza soluzioni per limitare le emissioni, fissando futili obiettivi futuri.
Resumo:
L’obiettivo di questo lavoro è lo studio della funzionalizzazione del fenolo mediante vie sintetiche “green”, che utilizzino quindi reagenti non clorurati e catalizzatori eterogenei, quindi facilmente recuperabili e riutilizzabili. Esistono però altri derivati fenolici di interesse commerciale, quali il catecolo, in quanto reagente di partenza per svariate molecole (tra cui appunto il DOPET) utilizzate in vari ambiti applicativi (alimentare, cosmetica, farmaceutica, agrochimica). In particolare, lo studio è stato focalizzato sulla sintesi dell’IDROSSITIROSOLO (o DOPET). Le prove effettutate con fenolo non hanno portato alla formazione del composto desiderato, ma di altri prodotti che comunque hanno interesse commerciale; ad esempio, è stato ottenuto il 2-fenossietanolo con elevata resa e selettività. Oltre al fenolo, ho studiato la reattività del metilendiossobenzene; con entrambi è stato ottenuto (seppur con basse rese) l’attacco all’anello da parte dell’etil gliossilato, formando così un intermedio potenzialmente utile per la sintesi dell’idrossitirosolo.
Resumo:
The hydrogen production in the green microalga Chlamydomonas reinhardtii was evaluated by means of a detailed physiological and biotechnological study. First, a wide screening of the hydrogen productivity was done on 22 strains of C. reinhardtii, most of which mutated at the level of the D1 protein. The screening revealed for the first time that mutations upon the D1 protein may result on an increased hydrogen production. Indeed, productions ranged between 0 and more than 500 mL hydrogen per liter of culture (Torzillo, Scoma et al., 2007a), the highest producer (L159I-N230Y) being up to 5 times more performant than the strain cc124 widely adopted in literature (Torzillo, Scoma, et al., 2007b). Improved productivities by D1 protein mutants were generally a result of high photosynthetic capabilities counteracted by high respiration rates. Optimization of culture conditions were addressed according to the results of the physiological study of selected strains. In a first step, the photobioreactor (PBR) was provided with a multiple-impeller stirring system designed, developed and tested by us, using the strain cc124. It was found that the impeller system was effectively able to induce regular and turbulent mixing, which led to improved photosynthetic yields by means of light/dark cycles. Moreover, improved mixing regime sustained higher respiration rates, compared to what obtained with the commonly used stir bar mixing system. As far as the results of the initial screening phase are considered, both these factors are relevant to the hydrogen production. Indeed, very high energy conversion efficiencies (light to hydrogen) were obtained with the impeller device, prooving that our PBR was a good tool to both improve and study photosynthetic processes (Giannelli, Scoma et al., 2009). In the second part of the optimization, an accurate analysis of all the positive features of the high performance strain L159I-N230Y pointed out, respect to the WT, it has: (1) a larger chlorophyll optical cross-section; (2) a higher electron transfer rate by PSII; (3) a higher respiration rate; (4) a higher efficiency of utilization of the hydrogenase; (5) a higher starch synthesis capability; (6) a higher per cell D1 protein amount; (7) a higher zeaxanthin synthesis capability (Torzillo, Scoma et al., 2009). These information were gathered with those obtained with the impeller mixing device to find out the best culture conditions to optimize productivity with strain L159I-N230Y. The main aim was to sustain as long as possible the direct PSII contribution, which leads to hydrogen production without net CO2 release. Finally, an outstanding maximum rate of 11.1 ± 1.0 mL/L/h was reached and maintained for 21.8 ± 7.7 hours, when the effective photochemical efficiency of PSII (ΔF/F'm) underwent a last drop to zero. If expressed in terms of chl (24.0 ± 2.2 µmoles/mg chl/h), these rates of production are 4 times higher than what reported in literature to date (Scoma et al., 2010a submitted). DCMU addition experiments confirmed the key role played by PSII in sustaining such rates. On the other hand, experiments carried out in similar conditions with the control strain cc124 showed an improved final productivity, but no constant PSII direct contribution. These results showed that, aside from fermentation processes, if proper conditions are supplied to selected strains, hydrogen production can be substantially enhanced by means of biophotolysis. A last study on the physiology of the process was carried out with the mutant IL. Although able to express and very efficiently utilize the hydrogenase enzyme, this strain was unable to produce hydrogen when sulfur deprived. However, in a specific set of experiments this goal was finally reached, pointing out that other than (1) a state 1-2 transition of the photosynthetic apparatus, (2) starch storage and (3) anaerobiosis establishment, a timely transition to the hydrogen production is also needed in sulfur deprivation to induce the process before energy reserves are driven towards other processes necessary for the survival of the cell. This information turned out to be crucial when moving outdoor for the hydrogen production in a tubular horizontal 50-liter PBR under sunlight radiation. First attempts with laboratory grown cultures showed that no hydrogen production under sulfur starvation can be induced if a previous adaptation of the culture is not pursued outdoor. Indeed, in these conditions the hydrogen production under direct sunlight radiation with C. reinhardtii was finally achieved for the first time in literature (Scoma et al., 2010b submitted). Experiments were also made to optimize productivity in outdoor conditions, with respect to the light dilution within the culture layers. Finally, a brief study of the anaerobic metabolism of C. reinhardtii during hydrogen oxidation has been carried out. This study represents a good integration to the understanding of the complex interplay of pathways that operate concomitantly in this microalga.
Resumo:
The following Ph.D work was mainly focused on catalysis, as a key technology, to achieve the objectives of sustainable (green) chemistry. After introducing the concepts of sustainable (green) chemistry and an assessment of new sustainable chemical technologies, the relationship between catalysis and sustainable (green) chemistry was briefly discussed and illustrated via an analysis of some selected and relevant examples. Afterwards, as a continuation of the ongoing interest in Dr. Marco Bandini’s group on organometallic and organocatalytic processes, I addressed my efforts to the design and development of novel catalytic green methodologies for the synthesis of enantiomerically enriched molecules. In the first two projects the attention was focused on the employment of solid supports to carry out reactions that still remain a prerogative of omogeneous catalysis. Firstly, particular emphasis was addressed to the discovery of catalytic enantioselective variants of nitroaldol condensation (commonly termed Henry reaction), using a complex consisting in a polyethylene supported diamino thiopene (DATx) ligands and copper as active species. In the second project, a new class of electrochemically modified surfaces with DATx palladium complexes was presented. The DATx-graphite system proved to be efficient in promoting the Suzuki reaction. Moreover, in collaboration with Prof. Wolf at the University of British Columbia (Vancouver), cyclic voltammetry studies were reported. This study disclosed new opportunities for carbon–carbon forming processes by using heterogeneous, electrodeposited catalyst films. A straightforward metal-free catalysis allowed the exploration around the world of organocatalysis. In fact, three different and novel methodologies, using Cinchona, Guanidine and Phosphine derivatives, were envisioned in the three following projects. An interesting variant of nitroaldol condensation with simple trifluoromethyl ketones and also their application in a non-conventional activation of indolyl cores by Friedel-Crafts-functionalization, led to two novel synthetic protocols. These approaches allowed the preparation of synthetically useful trifluoromethyl derivatives bearing quaternary stereocenters. Lastly, in the sixth project the first γ-alkylation of allenoates with conjugated carbonyl compounds was envisioned. In the last part of this Ph.D thesis bases on an extra-ordinary collaboration with Prof. Balzani and Prof. Gigli, I was involved in the synthesis and characterization of a new type of heteroleptic cyclometaled-Ir(III) complexes, bearing bis-oxazolines (BOXs) as ancillary ligands. The new heteroleptic complexes were fully characterized and in order to examine the electroluminescent properties of FIrBOX(CH2), an Organic Light Emitting Device was realized.