984 resultados para erythrocyte volume regulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acute exercise increases energy expenditure (EE) during exercise and post-exercise recovery [excess post-exercise oxygen consumption (EPOC)] and therefore may be recommended as part of the multidisciplinary management of obesity. Moreover, chronic exercise (training) effectively promotes an increase in insulin sensitivity, which seems to be associated with increased fat oxidation rates (FORs). The main purpose of this thesis is to investigate 1) FORs and extra-muscular factors (hormones and plasma metabolites) that regulate fat metabolism during acute and chronic exercise; and 2) EPOC during acute post-exercise recovery in obese and severely obese men (class II and III). In the first study, we showed that obese and severely obese men present a lower exercise intensity (Fatmax) eliciting maximal fat oxidation and a lower reliance on fat oxidation at high, but not at low and moderate, exercise intensities compared to lean men. This was most likely related to an impaired muscular capacity to oxidize non-esterified fatty acids (NEFA) rather than decreased plasma NEFA availability or a change in the hormonal milieu during exercise. In the second study, we developed an accurate maximal incremental test to correctly and simultaneously evaluate aerobic fitness and fat oxidation kinetics during exercise in this population. This test may be used for the prescription of an appropriate exercise training intensity. In the third study, we demonstrated that only 2 wk of exercise training [continuous training at Fatmax and adapted high-intensity interval training (HIIT)], matched with respect to mechanical work, may be effective to improve aerobic fitness, FORs during exercise and insulin sensitivity, which suggest that FORs might be rapidly improved and that adapted HIIT is feasible in this population. The increased FORs concomitant with the lack of changes in lipolysis during exercise suggest an improvement in the mismatching between NEFA availability and oxidation, highlighting the importance of muscular (oxidative capacity) rather than extra-muscular (hormones and plasma metabolites) factors in the regulation of fat metabolism after a training program. In the fourth study, we observed a positive correlation between EE during exercise and EPOC, suggesting that a chronic increase in the volume or intensity of exercise may increase EE during exercise and during recovery. This may have an impact in weight management in obesity. In conclusion, these findings might have practical implications for exercise training prescriptions in order to improve the therapeutic approaches in obesity and severe obesity. -- L'exercice aigu augmente la dépense énergétique (DE) pendant l'exercice et la récupération post-exercice [excès de consommation d'oxygène post-exercise (EPOC)] et peut être utilisé dans la gestion multidisciplinaire de l'obésité. Quant à l'exercice chronique (entraînement), il est efficace pour augmenter la sensibilité à l'insuline, ce qui semble être associé à une amélioration du débit d'oxydation lipidique (DOL). Le but de cette thèse est d'étudier 1) le DOL et les facteurs extra-musculaires (hormones et métabolites plasmatiques) qui régulent le métabolisme lipidique pendant l'exercice aigu et chronique et 2) l'EPOC lors de la récupération aiguë post-exercice chez des hommes obèses et sévèrement obèses (classe II et III). Dans la première étude nous avons montré que les hommes obèses et sévèrement obèses présentent une plus basse intensité d'exercice (Fatmax) correspondant au débit d'oxydation lipidique maximale et un plus bas DOL à hautes, mais pas à faibles et modérées, intensités d'exercice comparé aux sujets normo-poids, ce qui est probablement lié à une incapacité musculaire à oxyder les acides gras non-estérifiés (AGNE) plutôt qu'à une diminution de leur disponibilité ou à un changement du milieu hormonal pendant l'exercice. Dans la deuxième étude nous avons développé un test maximal incrémental pour évaluer simultanément l'aptitude physique aérobie et la cinétique d'oxydation des lipides pendant l'exercice chez cette population. Dans la troisième étude nous avons montré que seulement deux semaines d'entraînement (continu à Fatmax et intermittent à haute intensité), appariés par la charge de travail, sont efficaces pour améliorer l'aptitude physique aérobie, le DOL pendant l'exercice et la sensibilité à l'insuline, ce qui suggère que le DOL peut être rapidement amélioré chez cette population. Ceci, en absence de changements de la lipolyse pendant l'exercice, suggère une amélioration de la balance entre la disponibilité et l'oxydation des AGNE, ce qui souligne l'importance des facteurs musculaires (capacité oxydative) plutôt que extra-musculaires (hormones et métabolites plasmatiques) dans la régulation du métabolisme lipidique après un entraînement. Dans la quatrième étude nous avons observé une corrélation positive entre la DE pendant l'exercice et l'EPOC, ce qui suggère qu'une augmentation chronique du volume ou de l'intensité de l'exercice pourrait augmenter la DE lors de l'exercice et lors de la récupération post-exercice. Ceci pourrait avoir un impact sur la gestion du poids chez cette population. En conclusion, ces résultats pourraient avoir des implications pratiques lors de la prescription des entraînements dans le but d'améliorer les approches thérapeutiques de l'obésité et de l'obésité sévère.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To study the functional role of individual alpha1-adrenergic (AR) subtypes in blood pressure (BP) regulation, we used mice lacking the alpha1B-AR and/or alpha1D-AR with the same genetic background and further studied their hemodynamic and vasoconstrictive responses. Both the alpha1D-AR knockout and alpha1B-/alpha1D-AR double knockout mice, but not the alpha1B-AR knockout mice, had significantly (p < 0.05) lower levels of basal systolic and mean arterial BP than wild-type mice in nonanesthetized condition, and they showed no significant change in heart rate or in cardiac function, as assessed by echocardiogram. All mutants showed a significantly (p < 0.05) reduced catecholamine-induced pressor and vasoconstriction responses. It is noteworthy that the infusion of norepinephrine did not elicit any pressor response at all in alpha1B-/alpha1D-AR double knockout mice. In an attempt to further examine alpha1-AR subtype, which is involved in the genesis or maintenance of hypertension, BP after salt loading was monitored by tail-cuff readings and confirmed at the endpoint by direct intra-arterial recording. After salt loading, alpha1B-AR knockout mice developed a comparable level of hypertension to wild-type mice, whereas mice lacking alpha1D-AR had significantly (p < 0.05) attenuated BP and lower levels of circulating catecholamines. Our data indicated that alpha1B- and alpha1D-AR subtypes participate cooperatively in BP regulation; however, the deletion of the functional alpha1D-AR, not alpha1B-AR, leads to an antihypertensive effect. The study shows differential contributions of alpha1B- and alpha1D-ARs in BP regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The expression of the Bacillus subtilis W23 tar genes specifying the biosynthesis of the major wall teichoic acid, the poly(ribitol phosphate), was studied under phosphate limitation using lacZ reporter fusions. Three different regulation patterns can be deduced from these beta-galactosidase activity data: (i) tarD and tarL gene expression is downregulated under phosphate starvation; (ii) tarA and, to a minor extent, tarB expression after an initial decrease unexpectedly increases; and (iii) tarO is not influenced by phosphate concentration. To dissect the tarA regulatory pattern, its two promoters were analysed under phosphate limitation: The P(tarA)-ext promoter is repressed under phosphate starvation by the PhoPR two-component system, whereas, under the same conditions, the P(tarA)-int promoter is upregulated by the action of an extracytoplasmic function (ECF) sigma factor, sigma(M). In contrast to strain 168, sigma(M) is activated in strain W23 in phosphate-depleted conditions, a phenomenon indirectly dependent on PhoPR, the two-component regulatory system responsible for the adaptation to phosphate starvation. These results provide further evidence for the role of sigma(M) in cell-wall stress response, and suggest that impairment of cell-wall structure is the signal activating this ECF sigma factor.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé : L'insuline est produite et sécrétée par la cellule ß-pancréatique. Son rôle est de régler le taux de sucre dans le sang. Si ces cellules meurent ou échouent à produire suffisamment de l'insuline, les sujets développent le diabète de type 2 (DT2), une des maladies les plus communes dans les pays développés. L'excès chronique des lipoprotéines LDL oxydés (oxLDL) et/ou des cytokines pro-inflammatoires comme l'interleukine-1ß (IL-1ß) participent au dérèglement et à la mort des cellules ß. Nous avons montré qu'une chute des niveaux d'expression de la protéine nommée «mitogen activated protein kinase 8 interacting protein 1» ou «islet brain 1 (IB 1)» est en partie responsable des effets provoqués par les oxLDL ou IL-1ß. IB1 régule l'expression de l'insuline et la survie cellulaire en inhibant la voie de signalisation « c-jun N-terminal Kinase (JNK)». La réduction des niveaux d'expression d'IB1 provoque l'activation de la voie JNK en réponse aux facteurs environnementaux, et ainsi initie la réduction de l'expression de l'insuline et l'induction du programme de mort cellulaire. Les mimétiques de l'hormone "Glucagon-like peptide 1", tel que l'exendin-4 (ex-4), sont une nouvelle classe d'agents hypoglycémiants utilisés dans le traitement du DT2. Les effets bénéfiques de l'ex-4 sont en partie accomplis en préservant l'expression de l'insuline et la survie des cellules ß contre les stress associés au DT2. La restauration des niveaux d'expression d'IB1 est un des mécanismes par lequel l'ex-4 prodigue son effet sur la cellule. En effet, cette molécule stimule l'activité du promoteur du gène et ainsi compense la réduction du contenu en IB1 causée par le stress. Outre ce rôle anti-apoptotique, dans ce travail de thèse nous avons mis en évidence une autre fonction d'IB1 dans la cellule ß. La réduction de l'activité ou des niveaux d'expression d'IB1 induisent une réduction importante de la sécrétion de l'insuline en réponse au glucose. Le mécanisme par lequel IB1 régule la sécrétion de l'insuline implique à la fois le métabolisme du glucose et éventuellement le transport vésiculaire en contrôlant l'expression de la protéine annexin A2. En résumé, IB 1 est une molécule clé à travers laquelle l'environnement du diabétique pourrait exercer un effet délétère sur la cellule ß. L'amélioration de l'activité d'IB1 et/ou de son expression devrait être considérée dans les approches thérapeutiques futures visant à limiter la perte des cellules ß dans le diabète. Abstract : ß-cells of the pancreatic islets of Langerhans produce and secrete insulin when blood glucose rises. In turn, insulin ensures that plasma glucose concentrations return within a relatively narrow physiological range. If ß-cells die or fail to produce enough insulin, individuals develop one of the most common diseases in Western countries, namely type 2 diabetes (T2D). Chronic excess of oxidized low density lipoproteins (oxLDL) and/or pro-inflammatory cytokines such as interleukin 1-ß (IL-1ß) contribute to decline of ß-cells and thereby are thought to accelerate progression of the disease overtime. We showed that profound reduction in the levels of the mitogen activated protein kinase 8 interacting protein 1 also called islet brain 1 (IB1) causes ß-cell failure accomplished by oxLDL or IL-1 ß. IB1 regulates insulin expression and cell survivals by inhibiting the c-Jun N-terminal Kinase pathway. Diminution in IB 1 levels leads to an increase in activation of the JNK pathway induced by environmental stressors, and thus initiates loss of insulin expression and programmed cell death. The mimetic agents of the glucoincretin glucagon-like peptide 1 such as exendin-4 (ex-4) are new class of hypoglycaemic medicines for treatment of T2D. The beneficial property is in part achieved by preserving insulin expression and ß-cell survival against stressors related to diabetes. Restored levels in IB 1 account for the cytoprotective effect of the ex-4. In fact, the latter molecule .stimulates the promoter activity of the gene and thus compensates loss of IB1 content triggered by stress. Beside of the anti-apoptotic role, an additional leading function for IB 1 in ß-cells was highlighted in this thesis. Impairment in IB1 activity or silencing of the gene in ß-cells revealed a major reduction in insulin secretion elicited by glucose. The mechanisms whereby IB 1 couples glucose to insulin release involve glucose metabolism and potentially, vesicles trafficking by maintaining the levels of annexin A2. IB 1 is therefore a key molecule through which environmental factors related to diabetes may exert harmful effects on ß-cells. Improvement in IB 1 activity and/or expression should be considered as a target for therapeutic purpose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our objective was to establish the age-related 3D size of maxillary, sphenoid, and frontal sinuses. A total of 179 magnetic resonance imaging (MRI) of children under 17 years (76 females, 103 males) were included and sinuses were measured in the three axes. Maxillary sinuses measured at birth (mean+/-standard deviation) 7.3+/-2.7 mm length (or antero-posterior)/4.0+/-0.9 mm height (or cranio-caudal)/2.7+/-0.8 mm width (or transverse). At 16 years old, maxillary sinus measured 38.8+/-3.5 mm/36.3+/-6.2 mm/27.5+/-4.2 mm. Sphenoid sinus pneumatization starts in the third year of life after conversion from red to fatty marrow with mean values of 5.8+/-1.4 mm/8.0+/-2.3 mm/5.8+/-1.0 mm. Pneumatization progresses gradually to reach at 16 years 23.0+/-4.5 mm/22.6+/-5.8 mm/12.8+/-3.1 mm. Frontal sinuses present a wide variation in size and most of the time are not valuable with routine head MRI techniques. They are not aerated before the age of 6 years. Frontal sinuses dimensions at 16 years were 12.8+/-5.0 mm/21.9+/-8.4 mm/24.5+/-13.3 mm. A sinus volume index (SVI) of maxillary and sphenoid sinus was computed using a simplified ellipsoid volume formula, and a table with SVI according to age with percentile variations is proposed for easy clinical application. Percentile curves of maxillary and sphenoid sinuses are presented to provide a basis for objective determination of sinus size and volume during development. These data are applicable to other techniques such as conventional X-ray and CT scan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

alphabeta and gammadelta T cells originate from a common, multipotential precursor population in the thymus, but the molecular mechanisms regulating this lineage-fate decision are unknown. We have identified Sox13 as a gammadelta-specific gene in the immune system. Using Sox13 transgenic mice, we showed that this transcription factor promotes gammadelta T cell development while opposing alphabeta T cell differentiation. Conversely, mice deficient in Sox13 expression exhibited impaired development of gammadelta T cells but not alphabeta T cells. One mechanism of SOX13 function is the inhibition of signaling by the developmentally important Wnt/T cell factor (TCF) pathway. Our data thus reveal a dominant pathway regulating the developmental fate of these two lineages of T lymphocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Sulfate and phosphate are both vital macronutrients required for plant growth and development. Despite evidence for interaction between sulfate and phosphate homeostasis, no transcriptional factor has yet been identified in higher plants that affects, at the gene expression and physiological levels, the response to both elements. This work was aimed at examining whether PHR1, a transcription factor previously shown to participate in the regulation of genes involved in phosphate homeostasis, also contributed to the regulation and activity of genes involved in sulfate inter-organ transport. Results: Among the genes implicated in sulfate transport in Arabidopsis thaliana, SULTR1;3 and SULTR3;4 showed up-regulation of transcripts in plants grown under phosphate-deficient conditions. The promoter of SULTR1;3 contains a motif that is potentially recognizable by PHR1. Using the phr1 mutant, we showed that SULTR1;3 up regulation following phosphate deficiency was dependent on PHR1. Furthermore, transcript up regulation was found in phosphate-deficient shoots of the phr1 mutant for SULTR2;1 and SULTR3;4, indicating that PHR1 played both a positive and negative role on the expression of genes encoding sulfate transporters. Importantly, both phr1 and sultr1;3 mutants displayed a reduction in their sulfate shoot-to-root transfer capacity compared to wild-type plants under phosphate-deficient conditions. Conclusions: This study reveals that PHR1 plays an important role in sulfate inter-organ transport, in particular on the regulation of the SULTR1;3 gene and its impact on shoot-to-root sulfate transport in phosphate-deficient plants. PHR1 thus contributes to the homeostasis of both sulfate and phosphate in plants under phosphate deficiency. Such a function is also conserved in Chlamydomonas reinhardtii via the PHR1 ortholog PSR1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent evidence has emerged that peroxisome proliferator-activated receptor alpha (PPARalpha), which is largely involved in lipid metabolism, can play an important role in connecting circadian biology and metabolism. In the present study, we investigated the mechanisms by which PPARalpha influences the pacemakers acting in the central clock located in the suprachiasmatic nucleus and in the peripheral oscillator of the liver. We demonstrate that PPARalpha plays a specific role in the peripheral circadian control because it is required to maintain the circadian rhythm of the master clock gene brain and muscle Arnt-like protein 1 (bmal1) in vivo. This regulation occurs via a direct binding of PPARalpha on a potential PPARalpha response element located in the bmal1 promoter. Reversely, BMAL1 is an upstream regulator of PPARalpha gene expression. We further demonstrate that fenofibrate induces circadian rhythm of clock gene expression in cell culture and up-regulates hepatic bmal1 in vivo. Together, these results provide evidence for an additional regulatory feedback loop involving BMAL1 and PPARalpha in peripheral clocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leptin, a 16-kDa protein mainly produced by adipose tissue, has been involved in the control of energy balance through its hypothalamic receptor. However, pleiotropic effects of leptin have been identified in reproduction and pregnancy, particularly in placenta, where it was found to be expressed. In the current study, we examined the effect of cAMP in the regulation of leptin expression in trophoblastic cells. We found that dibutyryl cAMP [(Bu)(2)cAMP], a cAMP analog, showed an inducing effect on endogenous leptin expression in BeWo and JEG-3 cell lines when analyzed by Western blot analysis and quantitative RT-PCR. Maximal effect was achieved at 100 microM. Leptin promoter activity was also stimulated, evaluated by transient transfection with a reporter plasmid construction. Similar results were obtained with human term placental explants, thus indicating physiological relevance. Because cAMP usually exerts its actions through activation of protein kinase A (PKA) signaling, this pathway was analyzed. We found that cAMP response element-binding protein (CREB) phosphorylation was significantly increased with (Bu)(2)cAMP treatment. Furthermore, cotransfection with the catalytic subunit of PKA and/or the transcription factor CREB caused a significant stimulation on leptin promoter activity. On the other hand, the cotransfection with a dominant negative mutant of the regulatory subunit of PKA inhibited leptin promoter activity. We determined that cAMP effect could be blocked by pharmacologic inhibition of PKA or adenylyl ciclase in BeWo cells and in human placental explants. Thereafter, we decided to investigate the involvement of the MAPK/ERK signaling pathway in the cAMP effect on leptin induction. We found that 50 microm PD98059, a MAPK kinase inhibitor, partially blocked leptin induction by cAMP, measured both by Western blot analysis and reporter transient transfection assay. Moreover, ERK 1/2 phosphorylation was significantly increased with (Bu)(2)cAMP treatment, and this effect was dose dependent. Finally, we observed that 50 microm PD98059 inhibited cAMP-dependent phosphorylation of CREB in placental explants. In summary, we provide some evidence suggesting that cAMP induces leptin expression in placental cells and that this effect seems to be mediated by a cross talk between PKA and MAPK signaling pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION The purpose of this study was to investigate the association between HLA-DRB1 alleles with susceptibility to rheumatoid arthritis (RA) and production of antibodies against citrullinated proteins (ACPA) and rheumatoid factor (RF). METHODS We studied 408 patients (235 with RA, 173 non-RA) and 269 controls. ACPA, RF and HLA-DR typing were determined. RESULTS We found an increased frequency of HLA DRB1 alleles with the shared epitope (SE) in ACPA-positive RA. Inversely, HLA DRB1 alleles encoding DERAA sequences were more frequent in controls than in ACPA-positive RA, and a similar trend was found for HLA DR3. However, these results could not be confirmed after stratification for the presence of the SE, probably due to the relatively low number of patients. These data may suggest that the presence of these alleles may confer a protective role for ACPA-positive RA. In RA patients we observed association between SE alleles and ACPA titers in a dose-dependent effect. The presence of HLA DR3 or DERAA-encoding alleles was associated with markedly reduced ACPA levels. No association between RF titers and HLA DR3 or DERAA-encoding alleles was found. CONCLUSIONS HLA DRB1 alleles with the SE are associated with production of ACPA. DERAA-encoding HLA-DR alleles and HLA DR3 may be protective for ACPA-positive RA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most cases of emphysema are managed conservatively. However, in severe symptomatic emphysema associated with hyperinflation, lung volume reduction (LVR) may be proposed to improve dyspnea, exercice capacity, pulmonary functions, walk distance and to decrease long-term mortality. LVR may be achieved either surgically (LVRS) or endoscopically (EVLR by valves or coils) according to specific clinical criteria. Currently, the optimal approach is discussed in a multidisciplinary setting. The latter permits a personalized evaluation the patient's clinical status and allows the best possible therapeutic intervention to be proposed to the patient.