992 resultados para dipole approximation technique


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The density of states and the low temperature specific heat of higb-Tc superconductors are calculated in a functional integral formalism using the slave boson technique. The manybody calculation in a saddle point approximation shows that the Iow energy sector is dominated by 3 single band. The calculated values of density of states are in good agreement with experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laser‐induced damage and ablation thresholds of bulk superconducting samples of Bi2(SrCa)xCu3Oy(x=2, 2.2, 2.6, 2.8, 3) and Bi1.6 (Pb)xSr2Ca2Cu3 Oy (x=0, 0.1, 0.2, 0.3, 0.4) for irradiation with a 1.06 μm beam from a Nd‐YAG laser have been determined as a function of x by the pulsed photothermal deflection technique. The threshold values of power density for ablation as well as damage are found to increase with increasing values of x in both systems while in the Pb‐doped system the threshold values decrease above a specific value of x, coinciding with the point at which the Tc also begins to fall.  

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Irradiation of a Polymethyl methacrylate target using a pulsed Nd-YAG laser causes plasma formation in the vicinity of the target. The refractive index gradient due to the presence of the plasma is probed using phase-shift detection technique. The phase-shift technique is a simple but sensitive technique for the determination of laser ablation threshold of solids. The number density of laser generated plasma above the ablation threshold from Polymethyl methacrylate is calculated as a function of laser fluence. The number density varies from 2×1016 cm-3 to 2×1017 cm-3 in the fluence interval 2.8-13 J · cm-2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fluorescence spectrum of the schiff base obtained from salicylaldehyde and 2-aminophenol is studied using an argon-ion laser as the excitation source and its fluorescence quantum yield (Qf) is determined using a thermal lens method. This is a nondestructive technique that gives the absolute value of Qf without the need for a fluorescence standard. The quantum-yield values are calculated for various concentrations of the solution in chloroform and also for various excitation wavelengths. The value of Qf is relatively high, and is concentration dependent. The maximum value of Qf obtained is nearly 0.78. The high value of the fluorescence quantum yield will render the schiff base useful as a fluorescent marker for biological applications. Photostability and gain studies will assess its suitability as a laser dye.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dual beam transient thermal lens studies were carried out in rhodamine 6G methanol solutions using 532 nm pulses from a frequency doubled Nd:YAG laser. Analysis of thermal lens signal shows the existence of different nonlinear processes like two photon absorption and three photon absorption phenomena along with one photon absorption. Concentration of the dye in the solution has been found to influence the occurrence of the different processes in a significant way.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal diffusivity (TD) measurements were performed on some industrially important dyes – auramine O (AO), malachite green and methylene blue (MB) – adsorbed K-10 montmorillonites using photoacoustic method. The TD value for the dye-adsorbed clay mineral was observed to change with a variation in dye concentration. The contribution of the dye towards TD was also determined. The repeatedly adsorbed samples with MB and AO exhibited a lower TD than the single-adsorbed samples. TD values of sintered MB samples were also obtained experimentally. These sintered samples exhibit a higher TD, although they show a trend similar to that of non-sintered pellets. A variation in dye concentration and sintering temperature can be used for tuning the TD value of the clay mineral to the desired level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photothermal deflection technique was used for determining the laser damage threshold of polymer samples of teflon (PTFE) and nylon. The experiment was conducted using a Q-switched Nd-YAG laser operating at its fundamental wavelength (1-06μm, pulse width 10 nS FWHM) as irradiation source and a He-Ne laser as the probe beam, along with a position sensitive detector. The damage threshold values determined by photothermal deflection method were in good agreement with those determined by other methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pulsed photoacoustic measurements have been carried out in liquid CS2 using 532 nm radiation from a frequency doubled Nd:YAG laser. Variation of signal amplitude with laser fluence clearly indicates the role of multiphoton processes in the generation of photoacoustic effect. It is also shown that four photon induced dissociation and five photon induced ionization are likely processes in CS2 and 532 nm radiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laser ablation processes in liquid benzene, toluene and carbon disulphide have been investigated by pulsed photoacoustic technique using 532 nm radiation from a frequency doubled Q-switched Nd:YAG laser. The nature of variation of photoacoustic signal amplitude with laser energy clearly indicates that different phenomena are involved in the generation of photoacoustic effect and these are discussed in detail. Our results suggest multiphoton induced photofragmentation as the most plausible interaction process occurring during laser ablation in these liquids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Permittivity and conductivity studies of corn syrup in various concentrations are performed using coaxial cavity perturbation technique over a frequency range of 250 MHz–3000 MHz. The results are utilized to estimate relaxation time and dipole moments of the samples. The stability of the material over the variations of time is studied. The measured specific absorption rate of the material complies with the microwave power absorption rate of biological tissues. This suggests the feasibility of using corn syrup as a suitable, cost effective coupling medium for microwave breast imaging. The material can also be used as an efficient breast phantom in microwave breast imaging studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present thesis we have formulated the Dalgarno-Lewis procedure for two-and three-photon processes and an elegant alternate expressions are derived. Starting from a brief review on various multiphoton processes we have discussed the difficulties coming in the perturbative treatment of multiphoton processes. A small discussion on various available methods for studying multiphoton processes are presented in chapter 2. These theoretical treatments mainly concentrate on the evaluation of the higher order matrix elements coming in the perturbation theory. In chapter 3 we have described the use of Dalgarno-Lewis procedure and its implimentation on second order matrix elements. The analytical expressions for twophoton transition amplitude, two-photon ionization cross section, dipole dynamic polarizability and Kramers-Heiseberg are obtained in a unified manner. Fourth chapter is an extension of the implicit summation technique presented in chapter 3. We have clearly mentioned the advantage of our method, especially the analytical continuation of the relevant expressions suited for various values of radiation frequency which is also used for efficient numerical analysis. A possible extension of the work is to study various multiphoton processcs from the stark shifted first excited states of hydrogen atom. We can also extend this procedure for studying multiphoton processes in alkali atoms as well as Rydberg atoms. Also, instead of going for analytical expressions, one can try a complete numerical evaluation of the higher order matrix elements using this procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the large number of photothcrmal techniques available, photoacoustics assumes a very significant place because of its essential simplicity and the variety of applications it finds in science and technology. The photoacoustic (PA) effect is the generation of an acoustic signal when a sample, kept inside an enclosed volume, is irradiated by an intensity modulated beam of radiation. The radiation absorbed by the sample is converted into thermal waves by nonradiative de-excitation processes. The propagating thermal waves cause a corresponding expansion and contraction of the gas medium surrounding the sample, which in tum can be detected as sound waves by a sensitive microphone. These sound waves have the same frequency as the initial modulation frequency of light. Lock-in detection method enables one to have a sufficiently high signal to noise ratio for the detected signal. The PA signal amplitude depends on the optical absorption coefficient of the sample and its thermal properties. The PA signal phase is a function of the thermal diffusivity of the sample.Measurement of the PA amplitude and phase enables one to get valuable information about the thermal and optical properties of the sample. Since the PA signal depends on the optical and thennal properties of the sample, their variation will get reflected in the PA signal. Therefore, if the PA signal is collected from various points on a sample surface it will give a profile of the variations in the optical/thennal properties across the sample surface. Since the optical and thermal properties are affected by the presence of defects, interfaces, change of material etc. these will get reflected in the PA signal. By varying the modulation frequency, we can get information about the subsurface features also. This is the basic principle of PA imaging or PA depth profiling. It is a quickly expanding field with potential applications in thin film technology, chemical engineering, biology, medical diagnosis etc. Since it is a non-destructive method, PA imaging has added advantages over some of the other imaging techniques. A major part of the work presented in this thesis is concemed with the development of a PA imaging setup that can be used to detect the presence of surface and subsmface defects in solid samples.Determination of thermal transport properties such as thermal diffusivity, effusivity, conductivity and heat capacity of materials is another application of photothennal effect. There are various methods, depending on the nature of the sample, to determine these properties. However, there are only a few methods developed to determine all these properties simultaneously. Even though a few techniques to determine the above thermal properties individually for a coating can be found in literature, no technique is available for the simultaneous measurement of these parameters for a coating. We have developed a scanning photoacoustic technique that can be used to determine all the above thermal transport properties simultaneously in the case of opaque coatings such as paints. Another work that we have presented in this thesis is the determination of thermal effusivity of many bulk solids by a scanning photoacoustic technique. This is one of the very few methods developed to determine thermal effiisivity directly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photothermal spectroscopy is a group of high sensitivity methods used to measure optical absorption and thermal characteristics of a sample.The basis of photothermal spectroscopy is a photo-induced change in the thermal state of the sample.Light energy absorbed and not lost by subsequent emission results in sample heating.This heating results in a temperature change as well as changes in thermodynamic parameters of the sample which are related to temperature.Measurements of the temperature,pressure,or density changes that occur due to optical absorption are ultimately the basis for the photothermal spectroscopic methods.This is a more direct measure of optical absorption than optical transmission based spectroscopies.Sample heating is a direct consequence of optical absorption and so photothermal spectroscopy signals are directly dependent on light absorption.Scattering and reflection losses do not produce photothermal signals.Subsequently,photothermal spectroscopy more accurately measures optical absorption in scattering solutions,in solids,and at interfaces.This aspect makes it particularly attractive for application to surface and solid absorption studies,and studies in scattering media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, we describe our efforts to develop device quality CuInSe2, films through low cost, simple and eco-friendly hybrid techniques. The most important point to be highlighted here is that the method fully avoids the use of poisonous gases such as H2Se/Se vapour. Instead, selenisation is achieved through solid state reaction between amorphous selenium and polycrystalline metal layers resulting in both binary and ternary selenides. Thin films of amorphous selenium (a-Se) used for this is deposited using Chemical Bath Deposition (CBD). CulnSe2 films are prepared through the selenisation process. Another PV material, indium selenide (In2Se3) thin films are also prepared using this process.