734 resultados para convective overshoot
Resumo:
Satellites have great potential for diagnosis of surface air quality conditions, though reduced sensitivity of satellite instrumentation to the lower troposphere currently impedes their applicability. One objective of the NASA DISCOVER-AQ project is to provide information relevant to improving our ability to relate satellite-observed columns to surface conditions for key trace gases and aerosols. In support of DISCOVER-AQ, this dissertation investigates the degree of correlation between O3 and NO2 column abundance and surface mixing ratio during the four DISCOVER-AQ deployments; characterize the variability of the aircraft in situ and model-simulated O3 and NO2 profiles; and use the WRF-Chem model to further investigate the role of boundary layer mixing in the column-surface connection for the Maryland 2011 deployment, and determine which of the available boundary layer schemes best captures the observations. Simple linear regression analyses suggest that O3 partial column observations from future satellite instruments with sufficient sensitivity to the lower troposphere may be most meaningful for surface air quality under the conditions associated with the Maryland 2011 campaign, which included generally deep, convective boundary layers, the least wind shear of all four deployments, and few geographical influences on local meteorology, with exception of bay breezes. Hierarchical clustering analysis of the in situ O3 and NO2 profiles indicate that the degree of vertical mixing (defined by temperature lapse rate) associated with each cluster exerted an important influence on the shapes of the median cluster profiles for O3, as well as impacted the column vs. surface correlations for many clusters for both O3 and NO2. However, comparisons to the CMAQ model suggest that, among other errors, vertical mixing is overestimated, causing too great a column-surface connection within the model. Finally, the WRF-Chem model, a meteorology model with coupled chemistry, is used to further investigate the impact of vertical mixing on the O3 and NO2 column-surface connection, for an ozone pollution event that occurred on July 26-29, 2011. Five PBL schemes were tested, with no one scheme producing a clear, consistent “best” comparison with the observations for PBLH and pollutant profiles; however, despite improvements, the ACM2 scheme continues to overestimate vertical mixing.
Resumo:
The study aims to improve the understanding about different atmospheric environments leading to the development of storms associated with heavy precipitation in Madeira Island. For this purpose, four main goals have been considered: 1) To document the synoptic and mesoscale environments associated with heavy precipitation. 2) To characterize surface precipitation patterns that affected the island during some periods of significant accumulated precipitation using numerical modelling. 3) To study the relationship between surface precipitation patterns and mesoscale environments. 4) To highlight how the PhD findings obtained in the first three goals can be translated into an operational forecast context. Concerning the large scale environment, precipitation over the island was favoured by weather systems (e.g, mesoscale convective systems and low pressure systems), as well as by the meridional transport of high amount of moisture from a structure denominated as “Atmospheric River”. The tropical origin of this moisture is underscored, however, their impact on the precipitation in Madeira was not so high during the 10 winter seasons [2002 – 2012] studied. The main factor triggering heavy precipitation events over the island is related to the local orography. The steep terrain favours orographically-induced stationary precipitation over the highlands, although maximum of precipitation at coastal region may be produced by localized blocking effect. These orographic precipitating systems presented different structures, associated with shallow and deep convection. Essentially, the study shows that the combination of airflow dynamics, moist content, and orography is the major mechanism that produces precipitation over the island. These factors together with the event duration act to define the regions of excessive precipitation. Finally, the study highlights two useful points for the operational sector, regarding the meridional water vapour transport and local effects causing significant precipitation over the Island; RESUMO: O estudo procura melhorar o entendimento sobre os diferentes ambientes atmosféricos que favorecem o desenvolvimento de tempestades associadas com precipitação intensa na ilha da Madeira. Nesse sentido foram definidos quatro objetivos: 1) Documentar os ambientes sinópticos e de mesoescala associados com precipitação intensa; 2) Caracterizar padrões de precipitação na superfície, em eventos de elevada precipitação acumulada, utilizando modelação numérica; 3) Estudar as relações entre os padrões de precipitação e ambientes de mesoescala; 4) Mostrar como tais resultados podem ser utilizados num contexto operacional de previsão do tempo. Em relação a ambientes de larga escala, verificou-se que a ocorrência de eventos de precipitação intensa sobre a ilha foi favorecida por sistemas meteorológicos, assim como pelo transporte meridional de humidade por meio de estruturas atualmente denominadas Rios atmosféricos. Neste último caso é de destacar a origem tropical de humidade, no entanto, o seu impacto na precipitação sobre a Madeira durante os 10 invernos estudados [2002-2012] não foi tão elevada. O principal fator que favorece os eventos de precipitação intensa está relacionado com a orografia local. O terreno complexo da ilha favorece a ocorrência de precipitação estacionária induzida orograficamente sobre as terras mais altas, embora a precipitação nas zonas costeiras possa ser produzida por um efeito localizado de bloqueio. Estes sistemas orográficos precipitantes apresentaram diferentes estruturas, associados a convecção pouco profunda e profunda. O estudo mostra que a combinação entre as características do escoamento, a quantidade de humidade, e a orografia são os condimentos essenciais para o desenvolvimento da precipitação sobre a ilha, atuando de maneira a definir as regiões de precipitação excessiva. Por fim, o estudo destaca dois pontos que podem ser úteis na previsão do tempo operacional, ligados a larga escala e aos efeitos locais, os quais podem levar ao desenvolvimento de tempestades e precipitação intensa sobre a ilha.
Resumo:
FEA simulation of thermal metal cutting is central to interactive design and manufacturing. It is therefore relevant to assess the applicability of FEA open software to simulate 2D heat transfer in metal sheet laser cuts. Application of open source code (e.g. FreeFem++, FEniCS, MOOSE) makes possible additional scenarios (e.g. parallel, CUDA, etc.), with lower costs. However, a precise assessment is required on the scenarios in which open software can be a sound alternative to a commercial one. This article contributes in this regard, by presenting a comparison of the aforementioned freeware FEM software for the simulation of heat transfer in thin (i.e. 2D) sheets, subject to a gliding laser point source. We use the commercial ABAQUS software as the reference to compare such open software. A convective linear thin sheet heat transfer model, with and without material removal is used. This article does not intend a full design of computer experiments. Our partial assessment shows that the thin sheet approximation turns to be adequate in terms of the relative error for linear alumina sheets. Under mesh resolutions better than 10e−5 m , the open and reference software temperature differ in at most 1 % of the temperature prediction. Ongoing work includes adaptive re-meshing, nonlinearities, sheet stress analysis and Mach (also called ‘relativistic’) effects.
Resumo:
Observing, modelling and understanding the climate-scale variability of the deep water formation (DWF) in the North-Western Mediterranean Sea remains today very challenging. In this study, we first characterize the interannual variability of this phenomenon by a thorough reanalysis of observations in order to establish reference time series. These quantitative indicators include 31 observed years for the yearly maximum mixed layer depth over the period 1980–2013 and a detailed multi-indicator description of the period 2007–2013. Then a 1980–2013 hindcast simulation is performed with a fully-coupled regional climate system model including the high-resolution representation of the regional atmosphere, ocean, land-surface and rivers. The simulation reproduces quantitatively well the mean behaviour and the large interannual variability of the DWF phenomenon. The model shows convection deeper than 1000 m in 2/3 of the modelled winters, a mean DWF rate equal to 0.35 Sv with maximum values of 1.7 (resp. 1.6) Sv in 2013 (resp. 2005). Using the model results, the winter-integrated buoyancy loss over the Gulf of Lions is identified as the primary driving factor of the DWF interannual variability and explains, alone, around 50 % of its variance. It is itself explained by the occurrence of few stormy days during winter. At daily scale, the Atlantic ridge weather regime is identified as favourable to strong buoyancy losses and therefore DWF, whereas the positive phase of the North Atlantic oscillation is unfavourable. The driving role of the vertical stratification in autumn, a measure of the water column inhibition to mixing, has also been analyzed. Combining both driving factors allows to explain more than 70 % of the interannual variance of the phenomenon and in particular the occurrence of the five strongest convective years of the model (1981, 1999, 2005, 2009, 2013). The model simulates qualitatively well the trends in the deep waters (warming, saltening, increase in the dense water volume, increase in the bottom water density) despite an underestimation of the salinity and density trends. These deep trends come from a heat and salt accumulation during the 1980s and the 1990s in the surface and intermediate layers of the Gulf of Lions before being transferred stepwise towards the deep layers when very convective years occur in 1999 and later. The salinity increase in the near Atlantic Ocean surface layers seems to be the external forcing that finally leads to these deep trends. In the future, our results may allow to better understand the behaviour of the DWF phenomenon in Mediterranean Sea simulations in hindcast, forecast, reanalysis or future climate change scenario modes. The robustness of the obtained results must be however confirmed in multi-model studies.
Resumo:
The first part of this study examines the relative roles of frontogenesis and tropopause undulation in determining the intensity and structural changes of Hurricane Sandy (2012) using a high-resolution cloud-resolving model. A 138-h simulation reproduces Sandy’s four distinct development stages: (i) rapid intensification, (ii) weakening, (iii) steady maximum surface wind but with large continued sea-level pressure (SLP) falls, and (iv) re-intensification. Results show typical correlations between intensity changes, sea-surface temperature and vertical wind shear during the first two stages. The large SLP falls during the last two stages are mostly caused by Sandy’s moving northward into lower-tropopause regions associated with an eastward-propagating midlatitude trough, where the associated lower-stratospheric warm air wraps into the storm and its surrounding areas. The steady maximum surface wind occurs because of the widespread SLP falls with weak pressure gradients lacking significant inward advection of absolute angular momentum (AAM). Meanwhile, there is a continuous frontogenesis in the outer region during the last three stages. Cyclonic inward advection of AAM along each frontal rainband accounts for the continued expansion of the tropical-storm-force wind and structural changes, while deep convection in the eyewall and merging of the final two survived frontal rainbands generate a spiraling jet in Sandy’s northwestern quadrant, leading to its re-intensification prior to landfall. The physical, kinematic and dynamic aspects of an upper-level outflow layer and its possible impact on the re-intensification of Sandy are examined in the second part of this study. Above the outflow layer isentropes are tilted downward with radius as a result of the development of deep convection and an approaching upper-level trough, causing weak subsidence. Its maximum outward radial velocity is located above the cloud top, so the outflow channel experiences cloud-induced long-wave cooling. Because Sandy has two distinct convective regions (an eyewall and a frontal rainband), it has multiple outflow layers, with the eyewall’s outflow layer located above that of the frontal rainband. During the re-intensification stage, the eyewall’s outflow layer interacts with a jet stream ahead of the upper-level trough axis. Because of the presence of inertial instability on the anticyclonic side of the jet stream and symmetric instability in the inner region of the outflow layer, Sandy’s secondary circulation intensifies. Its re-intensification ceases when these instabilities disappear. The relationship between the intensity of the secondary circulation and dynamic instabilities of the outflow layer suggests that the re-intensification occurs in response to these instabilities. Additionally, it is verified that the long-wave cooling in the outflow layer helps induce symmetric instability by reducing static stability.
Resumo:
We present a new radiation scheme for the Oxford Planetary Unified Model System for Venus, suitable for the solar and thermal bands. This new and fast radiative parameterization uses a different approach in the two main radiative wavelength bands: solar radiation (0.1-5.5 mu m) and thermal radiation (1.7-260 mu m). The solar radiation calculation is based on the delta-Eddington approximation (two-stream-type) with an adding layer method. For the thermal radiation case, a code based on an absorptivity/emissivity formulation is used. The new radiative transfer formulation implemented is intended to be computationally light, to allow its incorporation in 3D global circulation models, but still allowing for the calculation of the effect of atmospheric conditions on radiative fluxes. This will allow us to investigate the dynamical-radiative-microphysical feedbacks. The model flexibility can be also used to explore the uncertainties in the Venus atmosphere such as the optical properties in the deep atmosphere or cloud amount. The results of radiative cooling and heating rates and the global-mean radiative-convective equilibrium temperature profiles for different atmospheric conditions are presented and discussed. This new scheme works in an atmospheric column and can be easily implemented in 3D Venus global circulation models. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The problem of supersonic flow over a 5 degree half-angle cone with injection of gas through a porous section on the body into the boundary layer is studied experimentally. Three injected gases are used: helium, nitrogen, and RC318 (octafluorocyclobutane). Experiments are performed in a Mach 4 Ludwieg tube with nitrogen as the free stream gas. Shaping of the injector section relative to the rest of the body is found to admit a "tuned" injection rate which minimizes the strength of shock waves formed by injection. A high-speed schlieren imaging system with a framing rate of 290 kHz is used to study the instability in the region of flow downstream of injection, referred to as the injection layer. This work provides the first experimental data on the wavelength, convective speed, and frequency of the instability in such a flow. The stability characteristics of the injection layer are found to be very similar to those of a free shear layer. The findings of this work present a new paradigm for future stability analyses of supersonic flow with injection.
Resumo:
Tropical Rainfall Measuring Mission (TRMM) rainfall retrieval algorithms are evaluated in tropical cyclones (TCs). Differences between the Precipitation Radar (PR) and TRMM Microwave Imager (TMI) retrievals are found to be related to the storm region (inner core vs. rainbands) and the convective nature of the precipitation as measured by radar reflectivity and ice scattering signature. In landfalling TCs, the algorithms perform differently depending on whether the rainfall is located over ocean, land, or coastal surfaces. Various statistical techniques are applied to quantify these differences and identify the discrepancies in rainfall detection and intensity. Ground validation is accomplished by comparing the landfalling storms over the Southeast US to the NEXRAD Multisensor Precipitation Estimates (MPE) Stage-IV product. Numerous recommendations are given to algorithm users and developers for applying and interpreting these algorithms in areas of heavy and widespread tropical rainfall such as tropical cyclones.
Resumo:
Kenia liegt in den Äquatorialtropen von Ostafrika und ist als ein weltweiter Hot-Spot für Aflatoxinbelastung insbesondere bei Mais bekannt. Diese toxischen und karzinogenen Verbindungen sind Stoffwechselprodukte von Pilzen und so insbesondere von der Wasseraktivität abhängig. Diese beeinflusst sowohl die Trocknung als auch die Lagerfähigkeit von Nahrungsmitteln und ist somit ein wichtiger Faktor bei der Entwicklung von energieeffizienten und qualitätsorientierten Verarbeitungsprozessen. Die vorliegende Arbeit hat sich zum Ziel gesetzt, die Veränderung der Wasseraktivität während der konvektiven Trocknung von Mais zu untersuchen. Mittels einer Optimierungssoftware (MS Excel Solver) wurde basierend auf sensorerfassten thermo-hygrometrischen Daten der gravimetrische Feuchteverlust von Maiskolben bei 37°C, 43°C und 53°C vorausberechnet. Dieser Bereich stellt den Übergang zwischen Niedrig- und Hochtemperaturtrocknung dar. Die Ergebnisse zeigen deutliche Unterschiede im Verhalten der Körner und der Spindel. Die Trocknung im Bereich von 35°C bis 45°C kombiniert mit hohen Strömungsgeschwindigkeiten (> 1,5 m / s) begünstigte die Trocknung der Körner gegenüber der Spindel und kann daher für eine energieeffiziente Trocknung von Kolben mit hohem Anfangsfeuchtegehalt empfohlen werden. Weitere Untersuchungen wurden zum Verhalten unterschiedlicher Schüttungen bei der bei Mais üblichen Satztrocknung durchgeführt. Entlieschter und gedroschener Mais führte zu einem vergrößerten Luftwiderstand in der Schüttung und sowohl zu einem höheren Energiebedarf als auch zu ungleichmäßigerer Trocknung, was nur durch einen erhöhten technischen Aufwand etwa durch Mischeinrichtungen oder Luftumkehr behoben werden könnte. Aufgrund des geringeren Aufwandes für die Belüftung und die Kontrolle kann für kleine landwirtschaftliche Praxisbetriebe in Kenia daher insbesondere die Trocknung ganzer Kolben in ungestörten Schüttungen empfohlen werden. Weiterhin wurde in der Arbeit die Entfeuchtung mittels eines Trockenmittels (Silikagel) kombiniert mit einer Heizquelle und abgegrenztem Luftvolumen untersucht und der konventionellen Trocknung gegenüber gestellt. Die Ergebnisse zeigten vergleichbare Entfeuchtungsraten während der ersten 5 Stunden der Trocknung. Der jeweilige Luftzustand bei Verwendung von Silikagel wurde insbesondere durch das eingeschlossene Luftvolumen und die Temperatur beeinflusst. Granulierte Trockenmittel sind bei der Maistrocknung unter hygienischen Gesichtspunkten vorteilhaft und können beispielsweise mit einfachen Öfen regeneriert werden, so dass Qualitätsbeeinträchtigungen wie bei Hochtemperatur- oder auch Freilufttrocknung vermieden werden können. Eine hochwertige Maistrocknungstechnik ist sehr kapitalintensiv. Aus der vorliegenden Arbeit kann aber abgeleitet werden, dass einfache Verbesserungen wie eine sensorgestützte Belüftung von Satztrocknern, der Einsatz von Trockenmitteln und eine angepasste Schüttungshöhe praktikable Lösungen für Kleinbauern in Kenia sein können. Hierzu besteht, ggf. auch zum Aspekt der Verwendung regenerativer Energien, weiterer Forschungsbedarf.
Resumo:
In questo lavoro di tesi è stato analizzato il sistema convettivo a mesoscala (Mesoscale Convective System (MCS)) del 05/09/2015, abbattutosi sui golfi di Gaeta e di Napoli, sulla stessa città di Napoli e sull'entroterra irpino, scaricando una notevole quantità di fulmini e chicchi di grandine di dimensioni molto al di sopra di quelle usuali nella regione mediterranea, con un diametro compreso tra i 5 ed i 10 cm. Nel primo capitolo vengono presentati gli strumenti utilizzati per l'acquisizione dei dati da satellite, dei fulmini e delle mappe di previsione. Nel secondo capitolo viene effettuata un'analisi meteorologica, in cui vengono descritte le condizioni meteorologiche precedenti e contemporanee all'evento, col supporto di dati provenienti dai modelli numerici di previsione, dalle immagini da satellite e dai radiosondaggi; viene inoltre giudicata la performance di previsione dei modelli. Nel terzo capitolo viene descritto il lavoro di elaborazione dei dati da satellite e vengono esposti i risultati e i grafici ottenuti sull'evoluzione della nube. Si descrive l'elaborazione dei dati sui fulmini e, tramite mappe e grafici, si ricercano correlazioni e risultati. Nel quarto capitolo vengono mostrati alcuni fotogrammi estratti da video presenti su Internet che dimostrano l'eccezionalità dell'evento.
Resumo:
Both compressible and incompressible porous medium models are used in the literature to describe the mechanical aspects of living tissues. Using a stiff pressure law, it is possible to build a link between these two different representations. In the incompressible limit, compressible models generate free boundary problems where saturation holds in the moving domain. Our work aims at investigating the stiff pressure limit of reaction-advection-porous medium equations motivated by tumor development. Our first study concerns the analysis and numerical simulation of a model including the effect of nutrients. A coupled system of equations describes the cell density and the nutrient concentration and the derivation of the pressure equation in the stiff limit was an open problem for which the strong compactness of the pressure gradient is needed. To establish it, we use two new ideas: an L3-version of the celebrated Aronson-Bénilan estimate, and a sharp uniform L4-bound on the pressure gradient. We further investigate the sharpness of this bound through a finite difference upwind scheme, which we prove to be stable and asymptotic preserving. Our second study is centered around porous medium equations including convective effects. We are able to extend the techniques developed for the nutrient case, hence finding the complementarity relation on the limit pressure. Moreover, we provide an estimate of the convergence rate at the incompressible limit. Finally, we study a multi-species system. In particular, we account for phenotypic heterogeneity, including a structured variable into the problem. In this case, a cross-(degenerate)-diffusion system describes the evolution of the phenotypic distributions. Adapting methods recently developed in the context of two-species systems, we prove existence of weak solutions and we pass to the incompressible limit. Furthermore, we prove new regularity results on the total pressure, which is related to the total density by a power law of state.
Resumo:
This study investigates the effect of an additive process in manufacturing of thick composites. Airstone 780 E epoxy resin and 785H Hardener system is used in the analysis since it is widely used wind turbine blade, namely thick components. As a fiber, fabric by SAERTEX (812 g/m2) with a 0-90 degrees layup direction is used. Temperature overshoot is a major issue during the manufacturing of thick composites. A high temperature overshoot leads to an increase in residual stresses. These residual stresses are causing warping, delamination, dimensional instability, and undesired distortion of composite structures. A coupled thermo-mechanical model capable of predicting cure induced residual stresses have been built using the commercial FE software Abaqus®. The possibility of building thick composite components by means of adding a finite number of sub-laminates has been investigated. The results have been compared against components manufactured following a standard route. The influence of pre-curing of the sub-laminates has also been addressed and results compared with standard practice. As a result of the study, it is found that introducing additive process can prevent temperature overshoot to occur and benefits the residual stresses generation during the curing process. However, the process time required increases by 50%, therefore increasing the manufacturing costs. An optimized cure cycle is required to minimize process time and cure induced defects simultaneously.
Resumo:
Intermediate-complexity general circulation models are a fundamental tool to investigate the role of internal and external variability within the general circulation of the atmosphere and ocean. The model used in this thesis is an intermediate complexity atmospheric general circulation model (SPEEDY) coupled to a state-of-the-art modelling framework for the ocean (NEMO). We assess to which extent the model allows a realistic simulation of the most prominent natural mode of variability at interannual time scales: El-Niño Southern Oscillation (ENSO). To a good approximation, the model represents the ENSO-induced Sea Surface Temperature (SST) pattern in the equatorial Pacific, despite a cold tongue-like bias. The model underestimates (overestimates) the typical ENSO spatial variability during the winter (summer) seasons. The mid-latitude response to ENSO reveals that the typical poleward stationary Rossby wave train is reasonably well represented. The spectral decomposition of ENSO features a spectrum that lacks periodicity at high frequencies and is overly periodic at interannual timescales. We then implemented an idealised transient mean state change in the SPEEDY model. A warmer climate is simulated by an alteration of the parametrized radiative fluxes that corresponds to doubled carbon dioxide absorptivity. Results indicate that the globally averaged surface air temperature increases of 0.76 K. Regionally, the induced signal on the SST field features a significant warming over the central-western Pacific and an El-Niño-like warming in the subtropics. In general, the model features a weakening of the tropical Walker circulation and a poleward expansion of the local Hadley cell. This response is also detected in a poleward rearrangement of the tropical convective rainfall pattern. The model setting that has been here implemented provides a valid theoretical support for future studies on climate sensitivity and forced modes of variability under mean state changes.
Resumo:
Extra mixing at the borders of convective zones in stellar interiors takes on an important role in the chemical evolution of stars and galaxies through the transport of chemical elements towards the stellar surface: knowing the overshooting mechanism can therefore lead to a better understanding of the observed chemical abundances in stellar photospheres. The comprehension of this phenomenon is quite uncertain and currently object of many studies. In particular, concerning low mass stars, in the past decades several works highlighted a discrepancy between the observed luminosity of the Red-Giant Branch bump and its prediction from simulations, which can be fixed including overshooting at the base of the convective envelope. This work, studying the Red-Giant Branch bump and using it as a diagnostic for extra mixing processes, tries to classify two different types of overshooting, instantaneous and diffusive, using both simulations from stellar models and Globular Clusters’ data. The aim is to understand which one of the two mixing processes is the most suitable in reproducing the observed stellar behaviour and, in case both of them provide reliable results, what are the conditions under which they produce the same effects on the Red-Giant Branch bump luminosity function and are consequently indistinguishable. Finally, possible dependences of overshooting efficiency on stellar parameters, such as chemical composition, are analysed.