1000 resultados para Tortosa (Baix Ebre)
Resumo:
Estás palabras significan lo mismo, cada cual, en su contexto, presenta algunos matices diferenciadores. Sumak kawsay es quichua ecuatoriano y expresa la idea de una vida no mejor, ni mejor que la de otros, ni en continuo desvivir por mejorarla, sino simplemente buena. La segunda componente del título viene del aymara boliviano e introduce el elemento comunitario, por lo que tal vez se podría traducir como “buen convivir”, la sociedad buena para todos en suficiente Armonía interna. Buen vivir, finalmente, y en las diversas lenguas de los países centrales, suele implicar el disfrute individual, material, hedonista e incesante. Un somero repaso al modo con que los medios utilizan dichas palabras y sus semejantes (buena vida, vivirbien) lo confirmaría. En algún ejemplo extremo encontrado recientemente en España, “buen vivir” casi se reduciría al “comer, beber y dormir”. En la Constitución ecuatoriana de 2008 puede leerse que “se reconoce el derecho de la población a vivir en un ambiente sano y ecológicamente equilibrado, que garantice la sostenibilidad y el buen vivir, sumak kawsay”. Por su parte, la Constitución boliviana de 2009 es algo más prolija al respecto pues recoge la pluralidad lingüística del país que dicha constitución reconoce como plurinacional, y dice que “el estado asume y promueve como principios ético-morales de la sociedad plural: ama qhilla, ama llulla, ama suwa (no seas flojo, no seas mentiroso, ni seas ladrón), suma qamaña (vivir bien),ñandereko (vida armoniosa), teko kavi (vida buena), ivi maraei (tierra sin mal) y qhapaj ñan (camino o vida noble)”.
Resumo:
Propanil and its major degradation product, 3,4-dichloroaniline (DCA), were monitored in surface water and soil samples from two rice fields of the Ebre Delta area (Tarragona, Spain) following agricultural application. On-line solid-phase extraction (SPE) (water) and Soxhlet extraction (soil) followed by liquid chromatography/diode array detection (LC/DAD) were used for the trace determination of both compounds. Unequivocal confirmation/identification was conducted by using liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry, LC/APCI/MS (using negative and positive ionization modes). Concentrations of the herbicide propanil in water samples varied from 1.9 to 55.9 mu g/L. Propanil degraded very rapidly to DCA, and high concentrations of this product were found, varying from 16.5 to 470 mu g/L in water and 119 +/- 22 mu g/kg in soil samples. No detectable DCA (<0.001%) was found in the applied pesticide formulation, indicating that DCA formation took place after propanil application. These field results compared favorably with laboratory experiments showing that humic interactions had a strong influence on the pesticide degradation. The half-lifes under real conditions for propanil and DCA, calculated using a first-order decay, were 1.2 and 1.6 days, respectively.
Resumo:
O artigo estuda um conto e uma crônica de Ernest Hemingway, textos sustentados por uma mesma fonte primária: o depoimento que um velho de perto de 76 anos deu ao Hemingway repórter, nas proximidades do rio Ebro, numa frente de combate da Guerra Civil Espanhola. O conto de 1938, “O velho na ponte”, constitui-se, assim, da mesma narrativa de fundação presente, primeiro, na reportagem, também de 1938, “O bombardeio de Tortosa”.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Questo elaborato si basa sulla tecnica della sottotitolazione interlinguistica e si sviluppa, in particolare, attorno al commento della mia proposta di sottotitolazione del cortometraggio spagnolo di animazione “Españistán. De la Burbuja Inmobiliaria a la Crisis” di Aleix Saló (Spagna, 2011). Si tratta di un corto animato che, in sei minuti e mezzo, riassume in chiave umoristica l’evolversi della crisi economica spagnola nell’arco dell’ultimo decennio. L’elaborato seguirà il seguente schema: nel primo capitolo si spiegherà chi è Aleix Saló e quali sono le sue opere principali, oltre che la sua ideologia. In seguito, nel capitolo 2, si presenterà brevemente la tecnica della sottotitolazione interlinguistica, illustrandone le caratteristiche principali e le strategie di cui si avvale. Infine, nel capitolo 3, dopo un breve riassunto dei contenuti di Españistán, si procederà ad analizzare più specificamente i problemi affrontati durante la sottotitolazione del cortometraggio, motivando le soluzioni adottate.
Resumo:
Tradurre testi di brani musicali è il fulcro di questo lavoro. Il contesto è il Brasile, la città di Belo Horizonte, una realtà periferica e un gruppo di cantanti e musicisti di samba. Questo è il quadro ritratto del documentario preso in esame “Roda” di Carla Maia e Raquel Junquera e del quale si propone qui la sua traduzione integrale dal portoghese all'italiano per il sottotitolaggio (per il quale si sono seguiti i riferimenti del libro “Teoría y práctica de la subtitulación: Inglés-Español” di Jorge Díaz Cintas). Dopo una panoramica generale del samba come stile musicale e fenomeno culturale, in questa tesi si affrontano tematiche e complessità legate alla traduzione di canzoni e del genere filmico del documentario proponendo esempi specifici e spunti teorici. Inoltre, vengono inclusi argomenti quali registro, fraseologia e umorismo. Sono infine illustrati i metodi e gli strumenti usati per la realizzazione di questo lavoro.
Resumo:
The Global River Discharge (RivDIS) data set contains monthly discharge measurements for 1018 stations located throughout the world. The period of record varies widely from station to station, with a mean of 21.5 years. These data were digitized from published UNESCO archives by Charles Voromarty, Balaze Fekete, and B.A. Tucker of the Complex Systems Research Center (CSRC) at the University of New Hampshire. River discharge is typically measured through the use of a rating curve that relates local water level height to discharge. This rating curve is used to estimate discharge from the observed water level. The rating curves are periodically rechecked and recalibrated through on-site measurement of discharge and river stage.
Resumo:
El monte “Refalgueri” objeto de esta memoria está situado en la provincia de Tarragona, constituyendo el límite de la misma con las de Teruel y Castellón, en el partido Judicial de Tortosa y término municipal de La Cenia, sin que haya posibilidad de cambio en el presente de su posición administrativa.
Resumo:
The origins for this work arise in response to the increasing need for biologists and doctors to obtain tools for visual analysis of data. When dealing with multidimensional data, such as medical data, the traditional data mining techniques can be a tedious and complex task, even to some medical experts. Therefore, it is necessary to develop useful visualization techniques that can complement the expert’s criterion, and at the same time visually stimulate and make easier the process of obtaining knowledge from a dataset. Thus, the process of interpretation and understanding of the data can be greatly enriched. Multidimensionality is inherent to any medical data, requiring a time-consuming effort to get a clinical useful outcome. Unfortunately, both clinicians and biologists are not trained in managing more than four dimensions. Specifically, we were aimed to design a 3D visual interface for gene profile analysis easy in order to be used both by medical and biologist experts. In this way, a new analysis method is proposed: MedVir. This is a simple and intuitive analysis mechanism based on the visualization of any multidimensional medical data in a three dimensional space that allows interaction with experts in order to collaborate and enrich this representation. In other words, MedVir makes a powerful reduction in data dimensionality in order to represent the original information into a three dimensional environment. The experts can interact with the data and draw conclusions in a visual and quickly way.
Resumo:
Texto en dos col.
Resumo:
Dimensionality Reduction (DR) is attracting more attention these days as a result of the increasing need to handle huge amounts of data effectively. DR methods allow the number of initial features to be reduced considerably until a set of them is found that allows the original properties of the data to be kept. However, their use entails an inherent loss of quality that is likely to affect the understanding of the data, in terms of data analysis. This loss of quality could be determinant when selecting a DR method, because of the nature of each method. In this paper, we propose a methodology that allows different DR methods to be analyzed and compared as regards the loss of quality produced by them. This methodology makes use of the concept of preservation of geometry (quality assessment criteria) to assess the loss of quality. Experiments have been carried out by using the most well-known DR algorithms and quality assessment criteria, based on the literature. These experiments have been applied on 12 real-world datasets. Results obtained so far show that it is possible to establish a method to select the most appropriate DR method, in terms of minimum loss of quality. Experiments have also highlighted some interesting relationships between the quality assessment criteria. Finally, the methodology allows the appropriate choice of dimensionality for reducing data to be established, whilst giving rise to a minimum loss of quality.
Resumo:
The use of data mining techniques for the gene profile discovery of diseases, such as cancer, is becoming usual in many researches. These techniques do not usually analyze the relationships between genes in depth, depending on the different variety of manifestations of the disease (related to patients). This kind of analysis takes a considerable amount of time and is not always the focus of the research. However, it is crucial in order to generate personalized treatments to fight the disease. Thus, this research focuses on finding a mechanism for gene profile analysis to be used by the medical and biologist experts. Results: In this research, the MedVir framework is proposed. It is an intuitive mechanism based on the visualization of medical data such as gene profiles, patients, clinical data, etc. MedVir, which is based on an Evolutionary Optimization technique, is a Dimensionality Reduction (DR) approach that presents the data in a three dimensional space. Furthermore, thanks to Virtual Reality technology, MedVir allows the expert to interact with the data in order to tailor it to the experience and knowledge of the expert.
Resumo:
Tradicionalmente, el uso de técnicas de análisis de datos ha sido una de las principales vías para el descubrimiento de conocimiento oculto en grandes cantidades de datos, recopilados por expertos en diferentes dominios. Por otra parte, las técnicas de visualización también se han usado para mejorar y facilitar este proceso. Sin embargo, existen limitaciones serias en la obtención de conocimiento, ya que suele ser un proceso lento, tedioso y en muchas ocasiones infructífero, debido a la dificultad de las personas para comprender conjuntos de datos de grandes dimensiones. Otro gran inconveniente, pocas veces tenido en cuenta por los expertos que analizan grandes conjuntos de datos, es la degradación involuntaria a la que someten a los datos durante las tareas de análisis, previas a la obtención final de conclusiones. Por degradación quiere decirse que los datos pueden perder sus propiedades originales, y suele producirse por una reducción inapropiada de los datos, alterando así su naturaleza original y llevando en muchos casos a interpretaciones y conclusiones erróneas que podrían tener serias implicaciones. Además, este hecho adquiere una importancia trascendental cuando los datos pertenecen al dominio médico o biológico, y la vida de diferentes personas depende de esta toma final de decisiones, en algunas ocasiones llevada a cabo de forma inapropiada. Ésta es la motivación de la presente tesis, la cual propone un nuevo framework visual, llamado MedVir, que combina la potencia de técnicas avanzadas de visualización y minería de datos para tratar de dar solución a estos grandes inconvenientes existentes en el proceso de descubrimiento de información válida. El objetivo principal es hacer más fácil, comprensible, intuitivo y rápido el proceso de adquisición de conocimiento al que se enfrentan los expertos cuando trabajan con grandes conjuntos de datos en diferentes dominios. Para ello, en primer lugar, se lleva a cabo una fuerte disminución en el tamaño de los datos con el objetivo de facilitar al experto su manejo, y a la vez preservando intactas, en la medida de lo posible, sus propiedades originales. Después, se hace uso de efectivas técnicas de visualización para representar los datos obtenidos, permitiendo al experto interactuar de forma sencilla e intuitiva con los datos, llevar a cabo diferentes tareas de análisis de datos y así estimular visualmente su capacidad de comprensión. De este modo, el objetivo subyacente se basa en abstraer al experto, en la medida de lo posible, de la complejidad de sus datos originales para presentarle una versión más comprensible, que facilite y acelere la tarea final de descubrimiento de conocimiento. MedVir se ha aplicado satisfactoriamente, entre otros, al campo de la magnetoencefalografía (MEG), que consiste en la predicción en la rehabilitación de lesiones cerebrales traumáticas (Traumatic Brain Injury (TBI) rehabilitation prediction). Los resultados obtenidos demuestran la efectividad del framework a la hora de acelerar y facilitar el proceso de descubrimiento de conocimiento sobre conjuntos de datos reales. ABSTRACT Traditionally, the use of data analysis techniques has been one of the main ways of discovering knowledge hidden in large amounts of data, collected by experts in different domains. Moreover, visualization techniques have also been used to enhance and facilitate this process. However, there are serious limitations in the process of knowledge acquisition, as it is often a slow, tedious and many times fruitless process, due to the difficulty for human beings to understand large datasets. Another major drawback, rarely considered by experts that analyze large datasets, is the involuntary degradation to which they subject the data during analysis tasks, prior to obtaining the final conclusions. Degradation means that data can lose part of their original properties, and it is usually caused by improper data reduction, thereby altering their original nature and often leading to erroneous interpretations and conclusions that could have serious implications. Furthermore, this fact gains a trascendental importance when the data belong to medical or biological domain, and the lives of people depends on the final decision-making, which is sometimes conducted improperly. This is the motivation of this thesis, which proposes a new visual framework, called MedVir, which combines the power of advanced visualization techniques and data mining to try to solve these major problems existing in the process of discovery of valid information. Thus, the main objective is to facilitate and to make more understandable, intuitive and fast the process of knowledge acquisition that experts face when working with large datasets in different domains. To achieve this, first, a strong reduction in the size of the data is carried out in order to make the management of the data easier to the expert, while preserving intact, as far as possible, the original properties of the data. Then, effective visualization techniques are used to represent the obtained data, allowing the expert to interact easily and intuitively with the data, to carry out different data analysis tasks, and so visually stimulating their comprehension capacity. Therefore, the underlying objective is based on abstracting the expert, as far as possible, from the complexity of the original data to present him a more understandable version, thus facilitating and accelerating the task of knowledge discovery. MedVir has been succesfully applied to, among others, the field of magnetoencephalography (MEG), which consists in predicting the rehabilitation of Traumatic Brain Injury (TBI). The results obtained successfully demonstrate the effectiveness of the framework to accelerate and facilitate the process of knowledge discovery on real world datasets.