899 resultados para Split tensile strength
Resumo:
A nanocomposite based on bacterial cellulose (BC) and type I collagen (COL) was evaluated for in vitro bone regeneration. BC membranes were modified by glycine esterification followed by cross-linking of type I collagen employing 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide. Collagen incorporation was studied by spectroscopy analysis. X-Ray diffraction showed changes in the BC crystallinity after collagen incorporation. The elastic modulus and tensile strength for BC-COL decreased, while the strain at failure showed a slight increase, even after sterilization, as compared to pristine BC. Swelling tests and contact angle measurements were also performed. Cell culture experiments performed with osteogenic cells were obtained by enzymatic digestion of newborn rat calvarium revealed similar features of cell morphology for cultures grown on both membranes. Cell viability/proliferation was not different between BC and BC-COL membranes at day 10 and 14. The high total protein content and ALP activity at day 17 in cells cultured on BC-COL indicate that this composite allowed the development of the osteoblastic phenotype in vitro. Thus, BC-COL should be considered as alternative biomaterial for bone tissue engineering.
Resumo:
Resistance to corrosion, high tensile strength, low weight, easiness and rapidity of application, are characteristics that have contributed to the spread of the strengthening technique characterized by bonding of carbon fibers reinforced polymer (CFRP). This research aimed to develop an innovate strengthening method for RC beams, based on a high performance cement-based composite of steel fibers (macro + microfibers) to be applied as a transition layer. The purpose of this transition layer is better control the cracking of concrete and detain or even avoid premature debonding of strengthening. A preliminary study in short beams molded with steel fibers and strengthened with CFRP sheet, was carried out where was verified that the conception of the transition layer is valid. Tests were developed to get a cement-based composite with adequate characteristics to constitute the layer transition. Results showed the possibility to develop a high performance material with a pseudo strain-hardening behavior, high strength and fracture toughness. The application of the strengthening on the transition layer surface had significantly to improve the performance levels of the strengthened beam. It summary, it was proven the efficiency of the new strengthening technique, and much information can be used as criteria of projects for repaired and strengthened structures.
Resumo:
Reinforced concrete columns might fail because of buckling of the longitudinal reinforcing bar when exposed to earthquake motions. Depending on the hoop stiffness and the length-over-diameter ratio, the instability can be local (in between two subsequent hoops) or global (the buckling length comprises several hoop spacings). To get insight into the topic, an extensive literary research of 19 existing models has been carried out including different approaches and assumptions which yield different results. Finite element fiberanalysis was carried out to study the local buckling behavior with varying length-over-diameter and initial imperfection-over-diameter ratios. The comparison of the analytical results with some experimental results shows good agreement before the post buckling behavior undergoes large deformation. Furthermore, different global buckling analysis cases were run considering the influence of different parameters; for certain hoop stiffnesses and length-over-diameter ratios local buckling was encountered. A parametric study yields an adimensional critical stress in function of a stiffness ratio characterized by the reinforcement configuration. Colonne in cemento armato possono collassare per via dell’instabilità dell’armatura longitudinale se sottoposte all’azione di un sisma. In funzione della rigidezza dei ferri trasversali e del rapporto lunghezza d’inflessione-diametro, l’instabilità può essere locale (fra due staffe adiacenti) o globale (la lunghezza d’instabilità comprende alcune staffe). Per introdurre alla materia, è proposta un’esauriente ricerca bibliografica di 19 modelli esistenti che include approcci e ipotesi differenti che portano a risultati distinti. Tramite un’analisi a fibre e elementi finiti si è studiata l’instabilità locale con vari rapporti lunghezza d’inflessione-diametro e imperfezione iniziale-diametro. Il confronto dei risultati analitici con quelli sperimentali mostra una buona coincidenza fino al raggiungimento di grandi spostamenti. Inoltre, il caso d’instabilità globale è stato simulato valutando l’influenza di vari parametri; per certe configurazioni di rigidezza delle staffe e lunghezza d’inflessione-diametro si hanno ottenuto casi di instabilità locale. Uno studio parametrico ha permesso di ottenere un carico critico adimensionale in funzione del rapporto di rigidezza dato dalle caratteristiche dell’armatura.
Resumo:
L’utilizzo di materiali compositi come i calcestruzzi fibrorinforzati sta diventando sempre più frequente e diffuso. Tuttavia la scelta di nuovi materiali richiede una approfondita analisi delle loro caratteristiche e dei loro comportamenti. I vantaggi forniti dall’aggiunta di fibre d’acciaio ad un materiale fragile, quale il calcestruzzo, sono legati al miglioramento della duttilità e all'aumento di assorbimento di energia. L’aggiunta di fibre permette quindi di migliorare il comportamento strutturale del composito, dando vita ad un nuovo materiale capace di lavorare non solo a compressione ma anche in piccola parte a trazione, ma soprattutto caratterizzato da una discreta duttilità ed una buona capacità plastica. Questa tesi ha avuto come fine l’analisi delle caratteristiche di questi compositi cementizi fibrorinforzati. Partendo da prove sperimentali classiche quali prove di trazione e compressione, si è arrivati alla caratterizzazione di questi materiali avvalendosi di una campagna sperimentale basata sull’applicazione della norma UNI 11039/2003. L’obiettivo principale di questo lavoro consiste nell’analizzare e nel confrontare calcestruzzi rinforzati con fibre di due diverse lunghezze e in diversi dosaggi. Studiando questi calcestruzzi si è cercato di comprendere meglio questi materiali e trovare un riscontro pratico ai comportamenti descritti in teorie ormai diffuse e consolidate. La comparazione dei risultati dei test condotti ha permesso di mettere in luce differenze tra i materiali rinforzati con l’aggiunta di fibre corte rispetto a quelli con fibre lunghe, ma ha anche permesso di mostrare e sottolineare le analogie che caratterizzano questi materiali fibrorinforzati. Sono stati affrontati inoltre gli aspetti legati alle fasi della costituzione di questi materiali sia da un punto di vista teorico sia da un punto di vista pratico. Infine è stato sviluppato un modello analitico basato sulla definizione di specifici diagrammi tensione-deformazione; i risultati di questo modello sono quindi stati confrontati con i dati sperimentali ottenuti in laboratorio.
Resumo:
Zusammenfassung Das Ziel der Arbeit bestand darin, mit der Aufklärung der Abbindereaktion von Zinkphosphatzement eine Grundlage für eine gezielte Modifikation bzw. Optimierung zu schaffen, insbesondere im Hinblick auf einen Einsatz als permanenter Füllungswerkstoff. Über den Abbindechemismus war bislang lediglich bekannt, daß es sich bei den primär gebildeten Reaktionsprodukten um röntgenamorphe Phasen handelt, die sich nach Wochen bzw. Monaten in das thermodynamisch stabile Reaktionsprodukt alpha-Hopeit (alpha-Zn3(PO4)2·4H2O) umwandeln.Im Rahmen der vorliegenden Arbeit gelang durch den Einsatz der Infrarot-Reflexionsspek-troskopie (DRIFT) die Identifikation von Dizink Cyclotetraphosphat-Octahydrat (Zn2P4O12·8H2O) als röntgenamorpher Vorläuferphase. Das kondensierte Phosphat ist hydrolyseempfindlich sowie thermodynamisch instabil. Mit Hilfe der zeitaufgelösten 1H NMR-Spektroskopie konnte gezeigt werden, daß bereits nach ca. 10 Minuten eine Phasenumwandlung (topochemische Disproportionierung) in ein zunächst röntgenamorphes Orthophosphat stattfindet. Mittels 31P Doppelquanten-NMR-Spektroskopie gelang der Nachweis, daß innerhalb des röntgenamorphen Bereiches lokal nahgeordnete (nanokristalline) Bereiche auftreten, deren Ordnung sich auf einer Längenskala von 10 bis 30 Å erstreckt. Die Nanokristallite unterliegen einem Wachstumsprozeß, der schließlich zu alpha-Hopeit-Kristallen mit Ausdehnungen im Mikrometerbereich führt. Die Ursache für die primäre Ausbildung röntgenamorpher Reaktionsprodukte kann zunächst gelösten Aluminophosphatkomplexen zugeordnet werden, die im Verlauf der Abbindereaktion zu anorganischen Polymeren aggregieren und damit als Kristallisationsinhibitoren fungieren.
Resumo:
Das Ziel dieser Arbeit besteht darin, die Möglichkeiten der Sprühtrocknung für die Generierung von Inhalationspulvern zur Therapie von Lungenkrankheiten zu nutzen. Die Erzeugung von physikalisch stabilen und leicht dispergierbaren Partikeln steht hierbei im Vordergrund. Aufgrund von physiko-chemischen Untersuchungen (Glasübergangstemperatur, Fragilität, Relaxationsverhalten, Hygroskopizität) unterschiedlicher amorpher Hilfsstoffe (Lactose, Raffinose, Dextrane, Cyclodextrine) ist für Hydroxypropyl-β-Cyclodextrin das größte Potential für die Stabilisierung eines Wirkstoffes innerhalb einer amorphen Matrix erkennbar. Sprühgetrocknete Partikel weisen im Vergleich zu strahlgemahlenen Partikeln günstigere Dispergier- und Depositionseigenschaften auf. Dies ist vorrangig auf größere Berührungsflächen zwischen strahlgemahlenen Partikeln zurückzuführen. Kugelförmige sprühgetrocknete Partikel besitzen dagegen aufgrund einer punktförmigen Berührung geringere Haftkräfte. Versuche mit unterschiedlich stark gefalteten Partikeloberflächen weisen auf geringere Haftkräfte hin, wenn sich die Partikel an Stellen geringerer Krümmungsradien berühren. Dispergierversuche in einer definierten Rohrströmung (Deagglomerator) lassen auf einen kaskadenartigen Agglomeratzerfall schließen. Durch Sprüheinbettung unterschiedlicher Modellwirkstoffe (Salbutamolsulfat, Ipratropiumbromid, Budesonid) in Hydroxypropyl-β-Cyclodextrin konnten sowohl Einzelformulierungen als auch eine Kombinationsformulierung mit allen drei Wirkstoffen erzeugt werden. Diese weisen bei einem Wirkstoffgehalt bis max. 14% selbst nach vierwöchiger Offenlagerung bei 40°C und 75% r.F. keine bzw. nur geringfügige Veränderungen in der „Fine Particle Dose“ (FPD) auf. Die „Fine Particle Fraction“ (FPF) liegt bei diesen Formulierungen im Bereich von 40% bis 75%. In Verbindung mit einem geeigneten Pack- bzw. Trockenmittel, ist hierbei mit einer physikalischen Stabilität zu rechnen, die eine sinnvolle Produktlaufzeit eines Inhalationspulvers ermöglicht. Formulierungen mit höheren Wirkstoffkonzentrationen zeigen dagegen stärkere Veränderungen nach Stresslagerung. Als Beispiel einer kristallinen Sprühtrocknungsformulierung konnte ein Pulver bestehend aus Mannitol und Budesonid erzeugt werden.
Development of glass-ceramics from combination of industrial wastes together with boron mining waste
Resumo:
The utilization of borate mineral wastes with glass-ceramic technology was first time studied and primarily not investigated combinations of wastes were incorporated into the research. These wastes consist of; soda lime silica glass, meat bone and meal ash and fly ash. In order to investigate possible and relevant application areas in ceramics, kaolin clay, an essential raw material for ceramic industry was also employed in some studied compositions. As a result, three different glass-ceramic articles obtained by using powder sintering method via individual sintering processes. Light weight micro porous glass-ceramic from borate mining waste, meat bone and meal ash and kaolin clay was developed. In some compositions in related study, soda lime silica glass waste was used as an additive providing lightweight structure with a density below 0.45 g/cm3 and a crushing strength of 1.8±0.1 MPa. In another study within the research, compositions respecting the B2O3–P2O5–SiO2 glass-ceramic ternary system were prepared from; borate wastes, meat bone and meal ash and soda lime silica glass waste and sintered up to 950ºC. Low porous, highly crystallized glass-ceramic structures with density ranging between 1.8 ± 0,7 to 2.0 ± 0,3 g/cm3 and tensile strength ranging between 8,0 ± 2 to 15,0 ± 0,5 MPa were achieved. Lastly, diopside - wollastonite (SiO2-Al2O3-CaO )glass-ceramics from borate wastes, fly ash and soda lime silica glass waste were successfully obtained with controlled rapid sintering between 950 and 1050ºC. The wollastonite and diopside crystal sizes were improved by adopting varied combinations of formulations and heating rates. The properties of the obtained materials show; the articles with a uniform pore structure could be useful for thermal and acoustic insulations and can be embedded in lightweight concrete where low porous glass-ceramics can be employed as building blocks or additive in cement and ceramic industries.
Resumo:
A thorough investigation was made of the structure-property relation of well-defined statistical, gradient and block copolymers of various compositions. Among the copolymers studied were those which were synthesized using isobornyl acrylate (IBA) and n-butyl acrylate (nBA) monomer units. The copolymers exhibited several unique properties that make them suitable materials for a range of applications. The thermomechanical properties of these new materials were compared to acrylate homopolymers. By the proper choice of the IBA/nBA monomer ratio, it was possible to tune the glass transition temperature of the statistical P(IBA-co-nBA) copolymers. The measured Tg’s of the copolymers with different IBA/nBA monomer ratios followed a trend that fitted well with the Fox equation prediction. While statistical copolymers showed a single glass transition (Tg between -50 and 90 ºC depending on composition), DSC block copolymers showed two Tg’s and the gradient copolymer showed a single, but very broad, glass transition. PMBL-PBA-PMBL triblock copolymers of different composition ratios were also studied and revealed a microphase separated morphology of mostly cylindrical PMBL domains hexagonally arranged in the PBA matrix. DMA studies confirmed the phase separated morphology of the copolymers. Tensile studies showed the linear PMBL-PBA-PMBL triblock copolymers having a relatively low elongation at break that was increased by replacing the PMBL hard blocks with the less brittle random PMBL-r-PMMA blocks. The 10- and 20-arm PBA-PMBL copolymers which were studied revealed even more unique properties. SAXS results showed a mixture of cylindrical PMBL domains hexagonally arranged in the PBA matrix, as well as lamellar. Despite PMBL’s brittleness, the triblock and multi-arm PBA-PMBL copolymers could become suitable materials for high temperature applications due to PMBL’s high glass transition temperature and high thermal stability. The structure-property relation of multi-arm star PBA-PMMA block copolymers was also investigated. Small-angle X-ray scattering revealed a phase separated morphology of cylindrical PMMA domains hexagonally arranged in the PBA matrix. DMA studies found that these materials possess typical elastomeric behavior in a broad range of service temperatures up to at least 250°C. The ultimate tensile strength and the elastic modulus of the 10- and 20-arm star PBA-PMMA block copolymers are significantly higher than those of their 3-arm or linear ABA type counterparts with similar composition, indicating a strong effect of the number of arms on the tensile properties. Siloxane-based copolymers were also studied and one of the main objectives here was to examine the possibility to synthesize trifluoropropyl-containing siloxane copolymers of gradient distribution of trifluoropropyl groups along the chain. DMA results of the PDMS-PMTFPS siloxane copolymers synthesized via simultaneous copolymerization showed that due to the large difference in reactivity rates of 2,4,6-tris(3,3,3-trifluoropropyl)-2,4,6-trimethylcyclotrisiloxane (F) and hexamethylcyclotrisiloxane (D), a copolymer of almost block structure containing only a narrow intermediate fragment with gradient distribution of the component units was obtained. A more dispersed distribution of the trifluoropropyl groups was obtained by the semi-batch copolymerization process, as the DMA results revealed more ‘‘pure gradient type’’ features for the siloxane copolymers which were synthesized by adding F at a controlled rate to the polymerization of the less reactive D. As with trifluoropropyl-containing siloxane copolymers, vinyl-containing polysiloxanes may be converted to a variety of useful polysiloxane materials by chemical modification. But much like the trifluoropropyl-containing siloxane copolymers, as a result of so much difference in the reactivities between the component units 2,4,6-trivinyl-2,4,6-trimethylcyclotrisiloxane (V) and hexamethylcyclotrisiloxane (D), thermal and mechanical properties of the PDMS-PMVS copolymers obtained by simultaneous copolymerization was similar to those of block copolymers. Only the copolymers obtained by semi-batch method showed properties typical for gradient copolymers.
Resumo:
Natürliche hydraulische Bruchbildung ist in allen Bereichen der Erdkruste ein wichtiger und stark verbreiteter Prozess. Sie beeinflusst die effektive Permeabilität und Fluidtransport auf mehreren Größenordnungen, indem sie hydraulische Konnektivität bewirkt. Der Prozess der Bruchbildung ist sowohl sehr dynamisch als auch hoch komplex. Die Dynamik stammt von der starken Wechselwirkung tektonischer und hydraulischer Prozesse, während sich die Komplexität aus der potentiellen Abhängigkeit der poroelastischen Eigenschaften von Fluiddruck und Bruchbildung ergibt. Die Bildung hydraulischer Brüche besteht aus drei Phasen: 1) Nukleation, 2) zeitabhängiges quasi-statisches Wachstum so lange der Fluiddruck die Zugfestigkeit des Gesteins übersteigt, und 3) in heterogenen Gesteinen der Einfluss von Lagen unterschiedlicher mechanischer oder sedimentärer Eigenschaften auf die Bruchausbreitung. Auch die mechanische Heterogenität, die durch präexistierende Brüche und Gesteinsdeformation erzeugt wird, hat großen Einfluß auf den Wachstumsverlauf. Die Richtung der Bruchausbreitung wird entweder durch die Verbindung von Diskontinuitäten mit geringer Zugfestigkeit im Bereich vor der Bruchfront bestimmt, oder die Bruchausbreitung kann enden, wenn der Bruch auf Diskontinuitäten mit hoher Festigkeit trifft. Durch diese Wechselwirkungen entsteht ein Kluftnetzwerk mit komplexer Geometrie, das die lokale Deformationsgeschichte und die Dynamik der unterliegenden physikalischen Prozesse reflektiert. rnrnNatürliche hydraulische Bruchbildung hat wesentliche Implikationen für akademische und kommerzielle Fragestellungen in verschiedenen Feldern der Geowissenschaften. Seit den 50er Jahren wird hydraulisches Fracturing eingesetzt, um die Permeabilität von Gas und Öllagerstätten zu erhöhen. Geländebeobachtungen, Isotopenstudien, Laborexperimente und numerische Analysen bestätigen die entscheidende Rolle des Fluiddruckgefälles in Verbindung mit poroelastischen Effekten für den lokalen Spannungszustand und für die Bedingungen, unter denen sich hydraulische Brüche bilden und ausbreiten. Die meisten numerischen hydromechanischen Modelle nehmen für die Kopplung zwischen Fluid und propagierenden Brüchen vordefinierte Bruchgeometrien mit konstantem Fluiddruck an, um das Problem rechnerisch eingrenzen zu können. Da natürliche Gesteine kaum so einfach strukturiert sind, sind diese Modelle generell nicht sonderlich effektiv in der Analyse dieses komplexen Prozesses. Insbesondere unterschätzen sie die Rückkopplung von poroelastischen Effekten und gekoppelte Fluid-Festgestein Prozesse, d.h. die Entwicklung des Porendrucks in Abhängigkeit vom Gesteinsversagen und umgekehrt.rnrnIn dieser Arbeit wird ein zweidimensionales gekoppeltes poro-elasto-plastisches Computer-Model für die qualitative und zum Teil auch quantitativ Analyse der Rolle lokalisierter oder homogen verteilter Fluiddrücke auf die dynamische Ausbreitung von hydraulischen Brüchen und die zeitgleiche Evolution der effektiven Permeabilität entwickelt. Das Programm ist rechnerisch effizient, indem es die Fluiddynamik mittels einer Druckdiffusions-Gleichung nach Darcy ohne redundante Komponenten beschreibt. Es berücksichtigt auch die Biot-Kompressibilität poröser Gesteine, die implementiert wurde um die Kontrollparameter in der Mechanik hydraulischer Bruchbildung in verschiedenen geologischen Szenarien mit homogenen und heterogenen Sedimentären Abfolgen zu bestimmen. Als Resultat ergibt sich, dass der Fluiddruck-Gradient in geschlossenen Systemen lokal zu Störungen des homogenen Spannungsfeldes führen. Abhängig von den Randbedingungen können sich diese Störungen eine Neuausrichtung der Bruchausbreitung zur Folge haben kann. Durch den Effekt auf den lokalen Spannungszustand können hohe Druckgradienten auch schichtparallele Bruchbildung oder Schlupf in nicht-entwässerten heterogenen Medien erzeugen. Ein Beispiel von besonderer Bedeutung ist die Evolution von Akkretionskeilen, wo die große Dynamik der tektonischen Aktivität zusammen mit extremen Porendrücken lokal starke Störungen des Spannungsfeldes erzeugt, die eine hoch-komplexe strukturelle Entwicklung inklusive vertikaler und horizontaler hydraulischer Bruch-Netzwerke bewirkt. Die Transport-Eigenschaften der Gesteine werden stark durch die Dynamik in der Entwicklung lokaler Permeabilitäten durch Dehnungsbrüche und Störungen bestimmt. Möglicherweise besteht ein enger Zusammenhang zwischen der Bildung von Grabenstrukturen und großmaßstäblicher Fluid-Migration. rnrnDie Konsistenz zwischen den Resultaten der Simulationen und vorhergehender experimenteller Untersuchungen deutet darauf hin, dass das beschriebene numerische Verfahren zur qualitativen Analyse hydraulischer Brüche gut geeignet ist. Das Schema hat auch Nachteile wenn es um die quantitative Analyse des Fluidflusses durch induzierte Bruchflächen in deformierten Gesteinen geht. Es empfiehlt sich zudem, das vorgestellte numerische Schema um die Kopplung mit thermo-chemischen Prozessen zu erweitern, um dynamische Probleme im Zusammenhang mit dem Wachstum von Kluftfüllungen in hydraulischen Brüchen zu untersuchen.
Resumo:
In recent years, environmental concerns and the expected shortage in the fossil reserves have increased further development of biomaterials. Among them, poly(lactide) PLA possess some potential properties such as good ability process, excellent tensile strength and stiffness equivalent to some commercial petroleum-based polymers (PP, PS, PET, etc.). This biobased polymer is also biodegradable and biocompatible However, one great disadvantage of commercial PLA is slow crystallization rate, which restricts its use in many fields. Using of nanofillers is viewed as an efficient strategy to overcome this problem. In this thesis, the effect of bionanofillers in neat PLA and in blends of poly (L-lactide)(PLA)/poly(ε-Caprolactone) (PCL) has been investigated. The used nanofillers are: poly(L-lactide-co-ε-caprolactone) and poly(L-lactide-b-ε-caprolactone) grafted on cellulose nanowhiskers and neat cellulose nanowhiskers (CNW). The grafting reaction of poly(L-lactide-co-caprolactone) and poly (L-lactide-b-caprolactone) on the nanocellulose has been performed by the grafting from technique. In this way the polymerization reaction it is directly initiated on the substrate surface. The condition of the reaction were chosen after a temperature and solvent screening. By non-isothermal an isothermal DSC analysis the effect of bionanofillers on PLA and 80/20 PLA/PCL was evaluated. Non-isothermal DSC scans show a nucleating effect of the bionanofillers on PLA. This effect is detectable during PLA crystallization from the glassy state. Cold crystallization temperature is reduced upon the addition of the poly(L-lactide-b-caprolactone) grafted on cellulose nanowhiskers that is most performing bionanofiller in acting as a nucleating agent. On the other hand, DSC isothermal analysis on the overall crystallization rate indicate that cellulose nanowhiskers are best nucleating agents during isothermal crystallization from the melt state. In conclusion, nanofillers have different behavior depending on the processing conditions. However, the efficiency of our nanofillers as nucleating agent was clearly demonstrated in both isothermal as in non-isothermal condition.
Resumo:
The goal of this thesis is to make static tensile test on four Carbon Fiber Reinforced Polymer laminates, in such a way as to obtain the ultimate tensile strength of these laminates; in particular, the laminates analyzed were produced by Hand Lay-up technology. Testing these laminates we have a reference point on which to compare other laminates and in particular CFRP laminate produced by RTM technology.
Resumo:
The research activities were focused on evaluating the effect of Mo addition to mechanical properties and microstructure of A354 aluminium casting alloy. Samples, with increasing amount of Mo, were produced and heat treated. After heat treatment and exposition to high temperatures samples underwent microstructural and chemical analyses, hardness and tensile tests. The collected data led to the optimization of both casting parameters, for obtaining a homogeneous Mo distribution in the alloy, and heat treatment parameters, allowing the formation of Mo based strengthening precipitates stable at high temperature. Microstructural and chemical analyses highlighted how Mo addition in percentage superior to 0.1% wt. can modify the silicon eutectic morphology and hinder the formation of iron based β intermetallics. High temperature exposure curves, instead, showed that after long exposition hardness is slightly influenced by heat treatment while the effect of Mo addition superior to 0,3% is negligible. Tensile tests confirmed that the addition of 0.3%wt Mo induces an increase of about 10% of ultimate tensile strength after high temperature exposition (250°C for 100h) while heat treatments have slight influence on mechanical behaviour. These results could be exploited for developing innovative heat treatment sequence able to reduce residual stresses in castings produced with A354 modified with Mo.
Resumo:
Laser tissue soldering (LTS) is a promising technique for tissue fusion but is limited by the lack of reproducibility particularly when the amount of indocyanine green (ICG) applied as energy absorber cannot be controlled during the soldering procedure. Nanotechnology enables the control over the quantitative binding of the ICG. The aim of this study was to establish a highly reproducible and strong tissue fusion using ICG packed nanoshells. By including the chromophore in the soldering scaffold, dilution of the energy absorber during the soldering procedure is prevented. The feasibility of this novel nanoshell soldering technique was studied by assessing the local heating of the area and tensile strength of the resulting fused tissue.
Resumo:
Microsurgical suturing is the standard for cerebral bypass surgery, a technique where temporary occlusion is usually necessary. Non-occlusive techniques such as excimer laser-assisted non-occlusive anastomosis (ELANA) have certainly widened the spectrum of treatment of complex cerebrovascular situations, such as giant cerebral aneurysms, that were otherwise non-treatable. Nevertheless, the reduction of surgical risks while widening the spectrum of indications, such as a prophylactic cerebral bypass, is still a main aim, that we would like to pursue with our sutureless tissue fusion research. The primary concern in sutureless tissue fusion- and especially in tissue fusion of cerebral vessels- is the lack of reproducibility, often caused by variations in the thermal damage of the vessel. This has prevented this novel fusion technique from being applicable in daily surgical use. In this overview, we present three ways to further improve the laser tissue soldering technique.In the first section entitled "Laser Tissue Soldering Using a Biodegradable Polymer," a porous polymer scaffold doped with albumin (BSA) and indocyanine green (ICG) is presented, leading to strong and reproducible tensile strengths in tissue soldering. Histologies and future developments are discussed.In the section "Numerical Simulation for Improvement of Laser Tissue Soldering," a powerful theoretical simulation model is used to calculate temperature distribution during soldering. The goal of this research is to have a tool in hand that allows us to determine laser irradiation parameters that guarantee strong vessel fusion without thermally damaging the inner structures such as the intima and endothelium.In a third section, "Nanoparticles in Laser Tissue Soldering," we demonstrate that nanoparticles can be used to produce a stable and well-defined spatial absorption profile in the scaffold, which is an important step towards increasing the reproducibility. The risks of implanting nanoparticles into a biodegradable scaffold are discussed.Step by step, these developments in sutureless tissue fusion have improved the tensile strength and the reproducibility, and are constantly evolving towards a clinically applicable anastomosis technique.
Resumo:
Laser tissue welding and soldering is being increasingly used in the clinical setting for defined surgical procedures. The exact induced changes responsible for tensile strength are not yet fully investigated. To further improve the strength of the bonding, a better understanding of the laser impact at the subcellular level is necessary. The goal of this study was to analyze whether the effect of laser irradiation on covalent bonding in pure collagen using irradiances typically applied for tissue soldering. Pure rabbit and equine type I collagen were subjected to laser irradiation. In the first part of the study, rabbit and equine collagen were compared using identical laser and irradiation settings. In the second part of the study, equine collagen was irradiated at increasing laser powers. Changes in covalent bonding were studied indirectly using the sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) technique. Tensile strengths of soldered membranes were measured with a calibrated tensile force gauge. In the first experiment, no differences between the species-specific collagen bands were noted, and no changes in banding were found on SDS-PAGE after laser irradiation. In the second experiment, increasing laser irradiation power showed no effect on collagen banding in SDS-PAGE. Finally, the laser tissue soldering of pure collagen membranes showed virtually no determinable tensile strength. Laser irradiation of pure collagen at typical power settings and exposure times generally used in laser tissue soldering does not induce covalent bonding between collagen molecules. This is true for both rabbit and equine collagen proveniences. Furthermore, soldering of pure collagen membranes without additional cellular components does not achieve the typical tensile strength reported in native, cell-rich tissues. This study is a first step in a better understanding of laser impact at the molecular level and might prove useful in engineering of combined collagen-soldering matrix membranes for special laser soldering applications.