983 resultados para Scanline sampling technique
Resumo:
In this paper we address the problem of extracting representative point samples from polygonal models. The goal of such a sampling algorithm is to find points that are evenly distributed. We propose star-discrepancy as a measure for sampling quality and propose new sampling methods based on global line distributions. We investigate several line generation algorithms including an efficient hardware-based sampling method. Our method contributes to the area of point-based graphics by extracting points that are more evenly distributed than by sampling with current algorithms
Resumo:
The design and use of a novel apparatus for a variant of vacuum distillation is described. Relative to a conventional device, the apparatus/technique described permits superior recovery of multigram quantities of moderately volatile liquids from vacuum distillations.
Resumo:
We report the use of an optical fiber sensor to measure the soybean oil concentration in samples obtained from the mixture of pure biodiesel and commercial soybean oil. The operation of the device is based on the long-period grating sensitivity to the surrounding medium refractive index, which leads to measurable modifications in the grating transmission spectrum. The proposed analysis method results in errors in the oil concentration of 0.4% and 2.6% for pure biodiesel and commercial soybean oil, respectively. Techniques of total glycerol, dynamic viscosity, density, and hydrogen nuclear magnetic resonance spectroscopy were also employed to validate the proposed method.
Resumo:
This is a review of direct analysis using solid sampling graphite furnace atomic absorption spectrometry. Greater emphasis is dedicated to sample preparation, sample homogeneity, calibration and its application to microanalysis and micro-homogeneity studies. The main advantages and some difficulties related to the applicability of this technique are discussed. A literature search on the application of solid sampling graphite furnace atomic absorption spectrometry in trace element determination in many kinds of samples, including biological, clinical, technological and environmental ones, is also presented.
Resumo:
The uncertainty of any analytical determination depends on analysis and sampling. Uncertainty arising from sampling is usually not controlled and methods for its evaluation are still little known. Pierre Gy’s sampling theory is currently the most complete theory about samplingwhich also takes the design of the sampling equipment into account. Guides dealing with the practical issues of sampling also exist, published by international organizations such as EURACHEM, IUPAC (International Union of Pure and Applied Chemistry) and ISO (International Organization for Standardization). In this work Gy’s sampling theory was applied to several cases, including the analysis of chromite concentration estimated on SEM (Scanning Electron Microscope) images and estimation of the total uncertainty of a drug dissolution procedure. The results clearly show that Gy’s sampling theory can be utilized in both of the above-mentioned cases and that the uncertainties achieved are reliable. Variographic experiments introduced in Gy’s sampling theory are beneficially applied in analyzing the uncertainty of auto-correlated data sets such as industrial process data and environmental discharges. The periodic behaviour of these kinds of processes can be observed by variographic analysis as well as with fast Fourier transformation and auto-correlation functions. With variographic analysis, the uncertainties are estimated as a function of the sampling interval. This is advantageous when environmental data or process data are analyzed as it can be easily estimated how the sampling interval is affecting the overall uncertainty. If the sampling frequency is too high, unnecessary resources will be used. On the other hand, if a frequency is too low, the uncertainty of the determination may be unacceptably high. Variographic methods can also be utilized to estimate the uncertainty of spectral data produced by modern instruments. Since spectral data are multivariate, methods such as Principal Component Analysis (PCA) are needed when the data are analyzed. Optimization of a sampling plan increases the reliability of the analytical process which might at the end have beneficial effects on the economics of chemical analysis,
Resumo:
Signal processing methods based on the combined use of the continuous wavelet transform (CWT) and zero-crossing technique were applied to the simultaneous spectrophotometric determination of perindopril (PER) and indapamide (IND) in tablets. These signal processing methods do not require any priory separation step. Initially, various wavelet families were tested to identify the optimum signal processing giving the best recovery results. From this procedure, the Haar and Biorthogonal1.5 continuous wavelet transform (HAAR-CWT and BIOR1.5-CWT, respectively) were found suitable for the analysis of the related compounds. After transformation of the absorbance vectors by using HAAR-CWT and BIOR1.5-CWT, the CWT-coefficients were drawn as a graph versus wavelength and then the HAAR-CWT and BIOR1.5-CWT spectra were obtained. Calibration graphs for PER and IND were obtained by measuring the CWT amplitudes at 231.1 and 291.0 nm in the HAAR-CWT spectra and at 228.5 and 246.8 nm in BIOR1.5-CWT spectra, respectively. In order to compare the performance of HAAR-CWT and BIOR1.5-CWT approaches, derivative spectrophotometric (DS) method and HPLC as comparison methods, were applied to the PER-IND samples. In this DS method, first derivative absorbance values at 221.6 for PER and 282.7 nm for IND were used to obtain the calibration graphs. The validation of the CWT and DS signal processing methods was carried out by using the recovery study and standard addition technique. In the following step, these methods were successfully applied to the commercial tablets containing PER and IND compounds and good accuracy and precision were reported for the experimental results obtained by all proposed signal processing methods.
Resumo:
The objective of this study was to assess a new monitoring technique of particulate and trace metals in the atmosphere via the use of a passive sampler of air pollutants in the city of Goiânia. The average particulate weight and average concentrations of metals Fe, Cr, Zn, Pb, Cu, Mn, and Cd were 0.1104 g and 257.5; 23.4; 17.8; 6.7; 1.9; 0.8; 0.2 μg/m²/day, respectively. Higher Pb and Cr concentrations were obtained in areas with intense traffic. This study revealed that it is possible to monitor trace metals with passive sampling, developed at a low cost and operational facility.
Resumo:
Since the introduction of GC there has been an ongoing interest in reducing time of analysis resulting in new terms and definitions such as ultra fast gas chromatography (UF-GC). One of the most used definitions describes UF-GC as a technique that combines the employment of short narrow bore column with very fast temperature programming rates producing chromatographic peaks in the range of 50 ms and allowing separations times in 1-2 min or less. This paper summarizes the analytical approaches, the main parameters involved and the instrumentation towards UF-GC.
Resumo:
A flow system based on the sandwich technique is proposed for the sequential determination of ascorbic acid, dipyrone, acetylcysteine, captopril and paracetamol. The procedure is based on the reduction of Cu(II) by the analytes followed by the spectrophotometric measurement of the complex of Cu(I) with 2,2'-biquinoline 4,4'-dicarboxylic acid. Linear responses were achieved in the µmol L-1 range, with coefficients of variation better than 1.7%. Sampling rate was estimated as 60 determinations per hour, consuming 230 µg of BQA and generating 2.5 mL of waste per determination. Results for commercial samples agreed with those obtained by procedures recommended by the American and European pharmacopeias at the 95% confidence level.
Resumo:
Selective papers of the workshop on "Development of models and forest soil surveys for monitoring of soil carbon", Koli, Finland, April 5-9 2006.
Resumo:
We developed a simple, rapid, and solventless method for analyzing trihalomethanes in beer samples using headspace solid-phase microextraction. The effects of varying experimental parameters, such as extraction temperature and time, addition of sodium chloride, and agitation speed, on extraction yield were studied using a univariate experimental design. Limits of detection between 0.22 and 0.46 µg L- 1 and wide linear ranges were achieved for trihalomethanes. We measured the trihalomethane recoveries and precision (as the standard deviation of repeat measurements) and demonstrated the applicability of the proposed method by analyzing 32 beer samples.
Resumo:
A statistical mixture-design technique was used to study the effects of different solvents and their mixtures on the yield, total polyphenol content, and antioxidant capacity of the crude extracts from the bark of Schinus terebinthifolius Raddi (Anacardiaceae). The experimental results and their response-surface models showed that ternary mixtures with equal portions of all the three solvents (water, ethanol and acetone) were better than the binary mixtures in generating crude extracts with the highest yield (22.04 ± 0.48%), total polyphenol content (29.39 ± 0.39%), and antioxidant capacity (6.38 ± 0.21). An analytical method was developed and validated for the determination of total polyphenols in the extracts. Optimal conditions for the various parameters in this analytical method, namely, the time for the chromophoric reaction to stabilize, wavelength of the absorption maxima to be monitored, the reference standard and the concentration of sodium carbonate were determined to be 5 min, 780 nm, pyrogallol, and 14.06% w v-1, respectively. UV-Vis spectrophotometric monitoring of the reaction under these conditions proved the method to be linear, specific, precise, accurate, reproducible, robust, and easy to perform.