959 resultados para STRUCTURAL DEVELOPMENT


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose - The purpose of this paper is to identify the key elements of a new rapid prototyping process, which involves layer-by-layer deposition of liquid-state material and at the same time using an ultraviolet line source to cure the deposited material. This paper reports studies about the behaviour of filaments, deposition accuracy, filaments interaction and functional feasibility of system. Additionally, the author describes the process which has been proposed, the equipment that has been used for these studies and the material which was developed in this application. Design/methodology/approach - The research has been separated into three study areas in accordance with their goals. In the first, both the behaviour of filament and deposition accuracy was studied. The design of the experiment is described with focus on four response factors (bead width, filament quality, deposition accuracy and deposition continuity) along with function of three control factors (deposition height, deposition velocity and extrusion velocity). The author also studied the interaction between filaments as a function of bead centre distance. In addition, two test samples were prepared to serve as a proof of the methodology and to verify the functional feasibility of the process which has been studied. Findings - The results show that the proposed process is functionally feasible, and that it is possible to identify the main effects of control factors over response factors. That analysis is used to predict the condition of process as a function of the parameters which control the process. Also identified were distances of centre beads which result in a specific behaviour. The types of interaction between filaments were analysed and sorted into: union, separation and indeterminate. At the end, the functional feasibility of process was proved whereby two test parts could be built. Originality/value - This paper proposes a new rapid prototyping process and also presents test studies related to this proposition. The author has focused on the filament behaviour, deposition accuracy, interaction between filaments and studied the functional feasibility of process to provide new information about this process, which at the same time is useful to the development of other rapid prototyping processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we establish the concept of functionally graded fiber cement. We discuss the use of statistical mixture designs to choose formulations and present ideas for the production of functionally graded fiber cement components for Hatschek machines. The feasibility of producing functionally graded fiber cement by grading PVA fiber content has been experimentally evaluated. Thermogravimetric analysis (TG) was employed to assess fiber distribution profiles and four-point bending tests were applied to evaluate the mechanical performance of both conventional and graded composites. The results show that grading PVA fiber content is an effective way to produce functionally graded fiber cement, which allows for a reduction of the total fiber volume without a significant reduction on modulus of rupture of composite. TG tests were found adequate to assess the fiber content at different points in functionally graded fiber cements. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of the early age concrete properties is becoming more important, as the thermal effects and the shrinkage, even in the first hours, could generate cracks, increasing the permeability of the structure and being able to induce problems of durability and functionality in the same ones. The detailed study of the stresses development during the construction process can be decisive to keep low the cracking levels. In this work a computational model, based on the finite element method, was implemented to simulate the early age concrete behavior and, specially, the evaluation of the cracking risk. The finite element analysis encloses the computational modeling of the following phenomena: chemical, thermal, moisture diffusion and mechanical which occur at the first days after the concrete cast. The developed software results were compared with experimental values found in the literature, demonstrating an excellent approach for all the implemented analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work deals with the determination of crack openings in 2D reinforced concrete structures using the Finite Element Method with a smeared rotating crack model or an embedded crack model In the smeared crack model, the strong discontinuity associated with the crack is spread throughout the finite element As is well known, the continuity of the displacement field assumed for these models is incompatible with the actual discontinuity However, this type of model has been used extensively due to the relative computational simplicity it provides by treating cracks in a continuum framework, as well as the reportedly good predictions of reinforced concrete members` structural behavior On the other hand, by enriching the displacement field within each finite element crossed by the crack path, the embedded crack model is able to describe the effects of actual discontinuities (cracks) This paper presents a comparative study of the abilities of these 2D models in predicting the mechanical behavior of reinforced concrete structures Structural responses are compared with experimental results from the literature, including crack patterns, crack openings and rebar stresses predicted by both models

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports a research that evaluated the product development methodologies used in Brazilian small and medium-sized metal-mechanic enterprises (SMEs), in a specific region of Sao Paulo. The tool used for collecting the data was a questionnaire, which was developed and applied through interviews conducted by the researchers in 32 companies. The main focus of this paper can be condensed in the synthesis-question ""Is only the company responsible for the development?"" which was analyzed thoroughly. The results obtained from this analysis were evaluated directly (through the respective percentages of answers) and statistically (through the search of an index which demonstrates if two questions are related). The results point to a degree of maturity in SMEs, which allows product development to be conducted in cooperation networks. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The properties of recycled aggregate produced from mixed (masonry and concrete) construction and demolition (C&D) waste are highly variable, and this restricts the use of such aggregate in structural concrete production. The development of classification techniques capable of reducing this variability is instrumental for quality control purposes and the production of high quality C&D aggregate. This paper investigates how the classification of C&D mixed coarse aggregate according to porosity influences the mechanical performance of concrete. Concretes using a variety of C&D aggregate porosity classes and different water/cement ratios were produced and the mechanical properties measured. For concretes produced with constant volume fractions of water, cement, natural sand and coarse aggregate from recycled mixed C&D waste, the compressive strength and Young modulus are direct exponential functions of the aggregate porosity. Sink and float technique is a simple laboratory density separation tool that facilitates the separation of cement particles with lower porosity, a difficult task when done only by visual sorting. For this experiment, separation using a 2.2 kg/dmA(3) suspension produced recycled aggregate (porosity less than 17%) which yielded good performance in concrete production. Industrial gravity separators may lead to the production of high quality recycled aggregate from mixed C&D waste for structural concrete applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Load cells are used extensively in engineering fields. This paper describes a novel structural optimization method for single- and multi-axis load cell structures. First, we briefly explain the topology optimization method that uses the solid isotropic material with penalization (SIMP) method. Next, we clarify the mechanical requirements and design specifications of the single- and multi-axis load cell structures, which are formulated as an objective function. In the case of multi-axis load cell structures, a methodology based on singular value decomposition is used. The sensitivities of the objective function with respect to the design variables are then formulated. On the basis of these formulations, an optimization algorithm is constructed using finite element methods and the method of moving asymptotes (MMA). Finally, we examine the characteristics of the optimization formulations and the resultant optimal configurations. We confirm the usefulness of our proposed methodology for the optimization of single- and multi-axis load cell structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical impedance tomography (EIT) captures images of internal features of a body. Electrodes are attached to the boundary of the body, low intensity alternating currents are applied, and the resulting electric potentials are measured. Then, based on the measurements, an estimation algorithm obtains the three-dimensional internal admittivity distribution that corresponds to the image. One of the main goals of medical EIT is to achieve high resolution and an accurate result at low computational cost. However, when the finite element method (FEM) is employed and the corresponding mesh is refined to increase resolution and accuracy, the computational cost increases substantially, especially in the estimation of absolute admittivity distributions. Therefore, we consider in this work a fast iterative solver for the forward problem, which was previously reported in the context of structural optimization. We propose several improvements to this solver to increase its performance in the EIT context. The solver is based on the recycling of approximate invariant subspaces, and it is applied to reduce the EIT computation time for a constant and high resolution finite element mesh. In addition, we consider a powerful preconditioner and provide a detailed pseudocode for the improved iterative solver. The numerical results show the effectiveness of our approach: the proposed algorithm is faster than the preconditioned conjugate gradient (CG) algorithm. The results also show that even on a standard PC without parallelization, a high mesh resolution (more than 150,000 degrees of freedom) can be used for image estimation at a relatively low computational cost. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this article is to study the application of the holographic interferometry techniques in the structural analysis of submarine environment. These techniques are widely used today, with applications in many areas. Nevertheless, its application in submarine environments presents some challenges. The application of two techniques, electronic speckle pattern interferometry (ESPI) and digital holography, comparison of advantages and disadvantages of each of them is presented. A brief study is done on the influence of water properties and the optical effects due to suspended particles as well as possible solutions to minimize these problems. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work explores the design of piezoelectric transducers based on functional material gradation, here named functionally graded piezoelectric transducer (FGPT). Depending on the applications, FGPTs must achieve several goals, which are essentially related to the transducer resonance frequency, vibration modes, and excitation strength at specific resonance frequencies. Several approaches can be used to achieve these goals; however, this work focuses on finding the optimal material gradation of FGPTs by means of topology optimization. Three objective functions are proposed: (i) to obtain the FGPT optimal material gradation for maximizing specified resonance frequencies; (ii) to design piezoelectric resonators, thus, the optimal material gradation is found for achieving desirable eigenvalues and eigenmodes; and (iii) to find the optimal material distribution of FGPTs, which maximizes specified excitation strength. To track the desirable vibration mode, a mode-tracking method utilizing the `modal assurance criterion` is applied. The continuous change of piezoelectric, dielectric, and elastic properties is achieved by using the graded finite element concept. The optimization algorithm is constructed based on sequential linear programming, and the concept of continuum approximation of material distribution. To illustrate the method, 2D FGPTs are designed for each objective function. In addition, the FGPT performance is compared with the non-FGPT one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Safety Instrumented Systems (SIS) are designed to prevent and / or mitigate accidents, avoiding undesirable high potential risk scenarios, assuring protection of people`s health, protecting the environment and saving costs of industrial equipment. The design of these systems require formal methods for ensuring the safety requirements, but according material published in this area, has not identified a consolidated procedure to match the task. This sense, this article introduces a formal method for diagnosis and treatment of critical faults based on Bayesian network (BN) and Petri net (PN). This approach considers diagnosis and treatment for each safety instrumented function (SIF) including hazard and operability (HAZOP) study in the equipment or system under control. It also uses BN and Behavioral Petri net (BPN) for diagnoses and decision-making and the PN for the synthesis, modeling and control to be implemented by Safety Programmable Logic Controller (PLC). An application example considering the diagnosis and treatment of critical faults is presented and illustrates the methodology proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Piezoresistive materials, materials whose resistivity properties change when subjected to mechanical stresses, are widely utilized in many industries as sensors, including pressure sensors, accelerometers, inclinometers, and load cells. Basic piezoresistive sensors consist of piezoresistive devices bonded to a flexible structure, such as a cantilever or a membrane, where the flexible structure transmits pressure, force, or inertial force due to acceleration, thereby causing a stress that changes the resistivity of the piezoresistive devices. By applying a voltage to a piezoresistive device, its resistivity can be measured and correlated with the amplitude of an applied pressure or force. The performance of a piezoresistive sensor is closely related to the design of its flexible structure. In this research, we propose a generic topology optimization formulation for the design of piezoresistive sensors where the primary aim is high response. First, the concept of topology optimization is briefly discussed. Next, design requirements are clarified, and corresponding objective functions and the optimization problem are formulated. An optimization algorithm is constructed based on these formulations. Finally, several design examples of piezoresistive sensors are presented to confirm the usefulness of the proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electric arc furnace steel dust is a by-product of the steelmaking process and contains high amounts of the iron and zinc and significant amounts of lead, chromium, and cadmium. Metal recycling however, is not always economically feasible, especially due to the complex mineralogical composition of this material. In this study an application of this material is presented. Ceramics were produced with clay and variable amounts of steel dust. The bulk material was fired between 800 and 1100 degrees C. The influence of the composition and the processing temperature on the mechanical strength, linear shrinkage, water absorption, apparent density and bending strength and metal leaching of the ceramic samples was investigated. A blend of clay with up to 20% dust yielded ceramics with limited metal contamination risk and may thus be used for structural ceramics production. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ni-doped SnO(2) nanoparticles prepared by a polymer precursor method have been characterized structurally and magnetically. Ni doping (up to 10 mol%) does not significantly affect the crystalline structure of SnO(2), but stabilizes smaller particles as the Ni content is increased. A notable solid solution regime up to similar to 3 mol% of Ni, and a Ni surface enrichment for the higher Ni contents are found. The room temperature ferromagnetism with saturation magnetization (MS) similar to 1.2 x 10(-3) emu g(-1) and coercive field (H(C)) similar to 40 Oe is determined for the undoped sample, which is associated with the exchange coupling of the spins of electrons trapped in oxygen vacancies, mainly located on the surface of the particles. This ferromagnetism is enhanced as the Ni content increases up to similar to 3 mol%, where the Ni ions are distributed in a solid solution. Above this Ni content, the ferromagnetism rapidly decays and a paramagnetic behavior is observed. This finding is assigned to the increasing segregation of Ni ions (likely formed by interstitials Ni ions and nearby substitutional sites) on the particle surface, which modifies the magnetic behavior by reducing the available oxygen vacancies and/or the free electrons and favoring paramagnetic behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A polymer precursor method has been used to synthesize Ni-doped SnO(2) nanoparticles. X-ray diffraction (XRD) data analyses indicate the exclusive formation of nanosized particles with rutile-type phase (tetragonal SnO(2)) for Ni contents below 10 mol%. In this concentration range, the particle sizes decrease with increasing Ni content and a bulk solid solution limit was determined at similar to 1 mol%. Ni surface enrichment is present at concentrations higher than the solution limit. Only above 10 mol% Ni. the formation of a second NiO-related phase has been determined. Magnetization measurements suggest the occurrence of ferromagnetism for samples in the solid solution regime (below similar to 1 mol%). This ferromagnetism is associated with the exchange interaction between electron spins trapped on oxygen vacancies, and is enhanced as the amount of Ni(2+) substituting at Sn(4+) sites increases. Above the solid solution limit, ferromagnetism is destroyed by the Ni surface enrichment and the system behaves as a paramagnet. (C) 2010 Elsevier B.V. All rights reserved.