907 resultados para Membership Retention
Resumo:
Rutin is employed as antioxidant and to prevent the capillary fragility and, when incorporated in cosmetic emulsions, it must target the action site. In vitro cutaneous penetration studies through human skin is the ideal situation, however, there are difficulties to obtain and to maintain this tissue viability. Among the membrane models, shed snake skin presents itself as pure stratum corneum, providing barrier function similar to human and it is obtained without the animal sacrifice. The objectives of this research were the development and stability evaluation of a cosmetic emulsion containing rutin and propylene glycol (penetration enhancer) and the evaluation or rutin in vitro cutaneous penetration and retention from the emulsion, employing an alternative model biomembrane. Emulsion was developed with rutin and propylene glycol, both at 5.0% w/w. Active substance presented on the formulation was quantified by a validated spectrophotometric method at 361.0 nm. Rutin Rutin cutaneous penetration and retention was performed in vertical diffusion cells with shed snake skin of Crotalus durissus, as alternative model biomembrane, and distilled water and ethanol 99.5% (1:1), as receptor fluid. The experiment was conducted for six hours, at 37.0 +/- 0.5 degrees C with constant stirring of 300 rpm. Spectrophotometry at 410.0 nm, previously validated, determined the active substance after cutaneous penetration/ retention. Emulsion did not promote rutin cutaneous penetration through C. durissus skin, retaining 0.931 +/- 0.0391 mu g rutin/mg shed snake skin. The referred formulation was chemically stable for 30 days after stored at 25.0 +/- 2.0 degrees C, 5.0 +/- 0.5 degrees C and 45.0 +/- 0.5 degrees C. In conclusion, it has not been verified the active cutaneous penetration through the model biomembrane, but only its retention on the Crotalus durissus stratum corneum, condition considered stable for 30 days.
Resumo:
The scope of this research work was to investigate biogas production and purification by a two-step bench-scale biological system, consisting of fed-batch pulse-feeding anaerobic digestion of mixed sludge, followed by methane enrichment of biogas by the use of the cyanobacterium Arthrospira platensis. The composition of biogas was nearly constant, and methane and carbon dioxide percentages ranged between 70.5-76.0% and 13.2-19.5%, respectively. Biogas yield reached a maximum value (about 0.4 m(biogas)(3)/kgCOD(i)) at 50 days-retention time and then gradually decreased with a decrease in the retention time. Biogas CO(2) was then used as a carbon source for A. platensis cultivation either under batch or fed-batch conditions. The mean cell productivity of fed-batch cultivation was about 15% higher than that observed during the last batch phase (0.035 +/- 0.006 g(DM)/L/d), likely due to the occurrence of some shading effect under batch growth conditions. The data of carbon dioxide removal from biogas revealed the existence of a linear relationship between the rates of A. platensis growth and carbon dioxide removal from biogas and allowed calculating carbon utilization efficiency for biomass production of almost 95%. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Feijo, T.S., Cardozo, SX, Daleprane, J.B., Sabaa Srur, A.U.O. & Boaventura, G.T. [Evaluation of the influence of the proteinic quality of the genetically modified and organic soy beans in the growth of two generations of rats Wistar.] Avaliacao da influencia da qualidade proteica da soja geneticamente modificada e organica no crescimento de duas geracoes de ratos Wistar. Revista Brasileira de Medicina Veterinaria, 31(3):139-144, 2009. Programa de Pos-Graduacao em Patologia, Hospital Universitario Antonio Pedro. Centro de Ciencias Medicas, Universidade Federal Fluminense. Rua Marques do Parana, 303, Niteroi, RJ 24030-210, Brasil. E-mail: sergian@ufnj.br Sixty four Wistar rats, male of two consecutive generations determined as F(0) and F(1) were used to study the cumulative effect of two variety soy beans, cultivated with organic seasoning and genetically modified, The animals of each generation were divided into three groups of eight rats each fed on diets consisted of organic soy, soy genetically modified and casein respectively. All the animals received water and the diet ad libitum for period of 28 days. Where the diet consumption and the animals weight were evaluated. After statistic analysis of the results no expressive differences were observed on diet consumption, weight variation, protein efficient ratio and food efficiency ratio on same group of animals in the different generations. On the other hand, significant difference was found on final proteinic retention on animal descendants of the same groups; however of different generations. With this, the supplementation of organic soy with L-cistin provided better avail of this protein in relation to the protein of the soy genetically modified. However, this supplementation did not reveal efficiency in keeping the proteinic employment from one generation to another one, since soy varieties presented better performance on F(0) generation when compared with F(1).
Resumo:
The amylase from Neurospora crassa is an interesting enzyme, having higher stability than amylase from Aspergillus oryzea under a broad range of pH values. Moreover, the N. crassa enzyme may be immobilized on different supports with good retention of enzyme activity. The best stabilizations were achieved using Eupergit C 250 L or glyoxyl agarose, with which the enzyme remained fully active at 60C for 24 h while the soluble enzyme remained about 17%. The glyoxyl agarose immobilized enzyme had high thermostability, high optimal temperature (65C) and broad pH/activity profile, suggesting that this enzyme has potential for food and industrial applications for starch modification.
Resumo:
A method was optimized for the analysis of omeprazole (OMZ) by ultra-high speed LC with diode array detection using a monolithic Chromolith Fast Gradient RP 18 endcapped column (50 x 2.0 mm id). The analyses were performed at 30 degrees C using a mobile phase consisting of 0.15% (v/v) trifluoroacetic acid (TFA) in water (solvent A) and 0.15% (v/v) TFA in acetonitrile (solvent B) under a linear gradient of 5 to 90% B in 1 min at a flow rate of 1.0 mL/min and detection at 220 nm. Under these conditions, OMZ retention time was approximately 0.74 min. Validation parameters, such as selectivity, linearity, precision, accuracy, and robustness, showed results within the acceptable criteria. The method developed was successfully applied to OMZ enteric-coated pellets, showing that this assay can be used in the pharmaceutical industry for routine QC analysis. Moreover, the analytical conditions established allow for the simultaneous analysis of OMZ metabolites, 5-hydroxyomeprazole and omeprazole sulfone, in the same run, showing that this method can be extended to other matrixes with adequate procedures for sample preparation.
Resumo:
This paper describes an analytical method for the rapid screening and identification of the phenolic constituents present in the polar extracts of different Lychnophora spp. using LC-UV/DAD-ESI-MS and LC-UV/DAD-ESI-MS/MS. Compounds were identified based on UV, retention time, MS experiments and MS/MS of precursor ion or standard. On-line phytochemical investigation of Lychnophora spp. allowed for the identification of flavonoids, chlorogenic acid derivatives and lactones. Some of the observed compounds were for the first time identified in Lychnophora species in a fast analytical procedure. The data obtained here may be helpful to the investigation of polar constituents from other Lychnophora species.
Resumo:
A simple method was optimized and validated for determination of ractopamine hydrochloride (RAC) in raw material and feed additives by HPLC for use in quality control in veterinary industries. The best-optimized conditions were a C8 column (250 x 4.6 mm id, 5.0 mu m particle size) at room temperature with acetonitrile-100 mM sodium acetate buffer (pH 5.0; 75 + 25, v/v) mobile phase at a flow rate of 1.0 mL/min and UV detection at 275 nm. With these conditions, the retention time of RAC was around 5.2 min, and standard curves were linear in the concentration range of 160-240 mu g/mL (correlation coefficient >= 0.999). Validation parameters, such as selectivity, linearity, limit of detection (ranged from 1.60 to 2.05 mu g/mL), limit of quantification (ranged from 4.26 to 6.84 mu g/mL), precision (relative standard deviation <= 1.87%), accuracy (ranged from 96.97 to 100.54%), and robustness, gave results within acceptable ranges. Therefore, the developed method can be successfully applied for the routine quality control analysis of raw material and feed additives.
Resumo:
Chitosan treated alginate microparticles were prepared with the purpose of incorporating all-trans retinoic acid (ATRA) using an inexpensive, simple and fast method, enhancing dermal localization and sustaining the release of ATRA into the skin. Microparticles characterization, drug-polymer interaction, release profile and in vitro skin retention were investigated. Microparticles presented spherical shape and drug loading capacity of 47%. The drug content of these microparticles was affected by ATRA concentration and by the solvent used and it was more weakly affected by chitosan concentration. The release of ATRA was also affected by chitosan concentration. Microparticles prepared with 0.4% chitosan (w/w) resulted in drug release with a more sustained profile. The results of in vitro retention studies showed that chitosan treated alginate microparticles decreased the drug retention in the stratum corneum (SC), where occur the skin irritation, but maintained the ATRA concentration in the deeper skin layers, where occur the pathologies treated with ATRA. Then, the microparticles developed in this work can be a good candidate to improve the topical therapy with retinoid.
Resumo:
Green tea (Camellia sinensis) and Ginkgo biloba extracts in cosmetic formulations have been suggested to protect the skin against UV-induced damage and skin ageing. Thus, it is very important to assess the human skin penetration of their major flavonoids to verify if they penetrate and remain in the skin to exert their proposed effects. The aim of this study was to evaluate the human skin penetration of epigallocatechin-3-gallate (EGCG) and quercetin from green tea and G. biloba extracts vehiculated in cosmetic formulations. This study was conducted with fresh dermatomed human Caucasian skin from abdominal surgery mounted on static Franz diffusion cells. Skin samples were mounted between two diffusion half-cells and 10 mg/cm(2) of formulations supplemented with 6% of green tea or G. biloba extract were applied on the skin surface. The receptor fluid was removed after 6 and 24 h and analyzed by high-performance liquid chromatography for the quantification of the flavonoids. The stratum corneum was removed by tape stripping and immersed in methanol and the epidermis was mechanically separated from the dermis and triturated in methanol to extract EGCG and quercetin. The results showed that the flavonoids under study penetrated into the skin, without reaching the receptor fluid. The majority of EGCG was quantified in the stratum corneum (0.87 mu g/cm(2)), which was statistically higher than the EGCG concentrations found in viable epidermis (0.54 mu g/cm(2)) and in the dermis (0.38 mu g/cm(2)). The majority of quercetin was quantified in the viable epidermis (0.23 mu g/cm(2)), which was statistically higher than the EGCG concentration found in the stratum corneum layer (0.17 mu g/cm(2)). Finally, it can be concluded that EGCG and quercetin from green tea and G. biloba extracts vehiculated in cosmetic formulations presented good skin penetration and retention, which can favor their skin effects. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Microencapsulation of Lippia sidoides essential oil was carried out by spray drying. Blends of maltodextrin and gum arabic were used as carrier. Spray dried microparticles were characterized using conventional (thermogravimetry, evolved gas analysis) and combined (thermogravimetry-mass spectrometry analysis) thermal analysis techniques in order to evaluate the abilities of carriers with different compositions in retaining and in releasing the core vs. dynamic heating. Thermal analysis was useful to evaluate the physico-chemical interactions between the core and carriers and to determine the protective effect of the carriers on the evaporation of essential oil.
Resumo:
Protein transduction domains (PTDs) were recently demonstrated to increase the penetration of the model peptide P20 when the PTD and P20 were covalently attached. Here, we evaluated whether non-covalently linked PTDs were capable of increasing the skin penetration of P20. Two different PTDs were studied: YARA and WLR. Porcine ear skin mounted in a Franz diffusion cell was used to assess the penetration of P20 in the stratum corneum (SC) and viable skin (VS); VS consists of dermis and epidermis without SC. The transdermal delivery of P20 was also assessed. At 1 mM, YARA promoted a 2.33-fold increase in the retention of P20 in the SC but did not significantly increase the amount of P20 that reached VS. WLR significantly increased (2.88-fold) the penetration of P20 in VS. Compared to the non-attached form, the covalently linked WLR fragment was two times more effective in promoting the penetration of P20 into VS. None of the PTDs promoted transdermal delivery of P20 at 4 h post-application. It was concluded that selected non-covalently linked PTDs can be used as a penetration enhancer, but greater skin penetration efficiency can be achieved by covalently binding the PTD to the therapeutic agent. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
(+/-)-Licarin A (1), a neolignan obtained by the oxidative coupling reaction of isoeugenol, had in this study its enantiomers resolved. A novel, quick and efficient enantiomeric resolution of 1 was directly performed by chiral high-performance liquid chromatography (HPLC-PDA) protocol (CHIRALPACK (R) AD column; 9:1 (v/v) n-hexane:2-propanol; 1.0 mL/min). This method provided a chromatogram profile with a well-resolved peak separation. After isolation of each enantiomer with ee >99.9%, they were analysed in a polarimeter. Compound 2, which showed a retention time (t(r)) of 12.13 min, was the (+)-enantiomer and compound 3 (t(r) =18.90 min) was the (-)-enantiomer. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The influence of concentration and incorporation time of different drying excipients on the processing yields and physical properties of Eugenia dysenterica DC spray-dried extracts were investigated following a factorial design. Under the established conditions, the process yield ranged from 57.55 to 89.14%, and in most experiments, the recovered products presented suitable flowability and compressibility, as demonstrated by the Hausner factor, Carr index, and angle of repose. Additionally, in a general way, the parameters related to the dried products` flowability varied over a range acceptable for pharmaceutical purposes. An analysis of variance (ANOVA) proved that both factors and some of their interactions significantly affected most of the investigated responses at different levels. Mannitol proved to be an interesting alternative as an excipient for the drying of herbal extracts, even at low concentrations such as 12.5%. Furthermore, these results imply that the best condition to obtain dry extracts of E. dysenterica with high performance and adequate pharmacotechnical properties involves the lowest concentration and the highest incorporation time of mannitol.
Resumo:
In this study the effects of spray-drying conditions on the retention of enzyme activity of lipase produced by the endophytic fungus Cercospora kikuchii have been investigated. Drying runs were carried out in a bench-top spray dryer with a concurrent flow regime. The influence of the variables inlet temperature of drying gas, Tgi (86.4 to 153.6 degrees C); mass flow rate of the enzymatic extract fed to the dryer, Ws (2.63 to 9.36g/min); and concentration of the drying adjuvant added to the extract, ADJ (1.95 to 12.05%), on the spray-drying performance and on product quality was evaluated through experimental planning and regression analysis. The use of maltodextrin, as a stabilizing agent, slightly improved the retention of enzyme activity compared to -cyclodextrin. Statistical optimization of the experimental results allowed the determination of the processing conditions that maximized the retention of the enzymatic activity (RAE), namely, concentration of drying adjuvants of 12.05%, inlet temperature of the drying gas of 153.6 degrees C, and flow rate of the enzymatic extract fed to the dryer of 9.36g/min for the both drying adjuvants investigated.
Resumo:
Inclusion complexes of Lippia sidoides essential oil and beta-cyclodextrin were obtained by slurry method and its solid powdered form was prepared using spray drying. The influence of the spray drying, as well as the different essential oil:beta-cyclodextrin ratio on the characteristics of the final product was investigated. With regard to the total oil retention 1:10 mass/mass ratio as optimal was found between the essential oil and beta-cyclodextrin. Thermoanalytical techniques (TG, EGD, TG-MS) were used to support the formation of inclusion complex and to examine their physicochemical properties after accelerated storage conditions. It may be assumed that the thermal properties of the complexes were influenced not only by the different essential oil/beta-cyclodextrin ratio but also by the storage conditions. In the aspect of their thermal stabilities, complex prepared with 1:10 m/m ratio (essential oil: beta-cyclodextrin) was the most stable one.