919 resultados para Low energy ion scattering
Resumo:
GaN epilayers were grown on (0001) sapphire substrates by NH3-MBE and RF-MBE (radio frequency plasma). The polarities of the epilayers were investigated by in-situ RHEED, chemical solution etching and AFM surface examination. By using a RF-MBE grown GaN layer as template to deposit GaN epilayer by NH3-MBE method, we found that not only Ga-polarity GaN films were repeatedly obtained, but also the electron mobility of these Ga-polarity films was significantly improved with a best value of 290 cm(2)/V.s at room temperature. Experimental results show it is an easy and stable way for growth of high quality Ga-polarity GaN films.
Resumo:
In this paper, a graded Si1-xGex buffer and thereafter the Si0.8Ge0.2 uniform layer were grown at a little lower temperature to keep the surface smooth, which will provide the gliding dislocations a wider channel and less low energy nucleation sites on the surface. Therefore, the dislocation density may be reduced. However, the motion of the existing threading dislocations cannot retain equilibrium at lower temperature, strain will accumulate and be in favor of the nucleation of dislocation. In situ annealing was used to reduce the residual strain in the sample during the low-temperature growth of SiGe. A fully relaxed Si0.8Ge0.2 layer was obtained with the surface dislocation density of 3x10(5)cm(-2).
Resumo:
Red-emission at similar to 640 nm from self-assembled In0.55Al0.45As/Al0.5Ga0.5As quantum dots grown on GaAs substrate by molecular beam epitaxy (MBE) has been demonstrated. We obtained a double-peak structure of photoluminescence (PL) spectra from quantum dots. An atomic force micrograph (AFM) image for uncapped sample also shows a bimodal distribution of dot sizes. From the temperature and excitation intensity dependence of PL spectra, we found that the double-peak structure of PL spectra from quantum dots was strongly correlated to the two predominant quantum dot families. Taking into account quantum-size effect on the peak energy, we propose that the high (low) energy peak results from a smaller (larger) dot family, and this result is identical with the statistical distribution of dot lateral size from the AFM image.
Resumo:
The structural evolution of the ordered N-N' dibutyl-substituted quinacridone (QA4C) multilayers (3 MLs) has been monitored in situ and in real time at various substrate temperatures using low energy electron diffraction (LEED) during organic molecular beam epitaxy (MBE). Experimental results of LEED patterns clearly reveal that the structure of the multilayer strongly depends on the substrate temperature. Multilayer growth can be achieved at the substrate temperatures below 300 K, while at the higher temperatures we can only get one ordered monolayer of QA4C. Two kinds of structures, the commensurate and incommensurate one, often coexist in the QA4C multilayer. With a method of the two-step substrate temperatures, the incommensurate one can be suppressed, and the commensurate, on the other hand, more similar to the (001) plane of the QA4C bulk crystal, prevails with the layer of QA4C increasing to 3 MLs. The two structures in the multilayers are compressed slightly in comparison to the original ones in the first monolayer.
Resumo:
Recent experimental advances have made it possible to study excited structure in superheavy nuclei. The observed states have often been interpreted as quasiparticle excitations. We show that in superheavy nuclei collective vibrations systematically appear as low-energy excitation modes. By using the microscopic Triaxial Projected Shell Model, we make a detailed prediction on gamma-vibrational states and their E2 transition probabilities to the ground state band in fermium and nobelium isotopes where active structure research is going on, and in (270)Ds, the heaviest isotope where decay data have been obtained for the ground-state and for an isomeric state.
Resumo:
The collisions of the isocharged sequence ions of q=6 (C6+, N6+, O6+, F6+, Ne6+, Ar6+, and Ca6+), q=7 (F7+, Ne7+, S7+, Ar7+, and Ca7+), q=8 (F8+, Ne8+, Ar8+, and Ca8+), q=9 (F9+, Ne9+, Si9+, S9+, Ar9+, and Ca9+) and q=11 (Si11+, Ar11+, and Ca11+) with helium at the same velocities were investigated. The cross-section ratios of the double-electron transfer (DET) to the single-electron capture (SEC) sigma(DET)/sigma(SEC) and the true double-electron capture (TDC) to the double-electron transfer sigma(TDC)/sigma(DET) were measured. It shows that for different ions in an isocharged sequence, the experimental cross-section ratio sigma(DET)/sigma(SEC) varies by a factor of 3. The results confirm that the projectile core is another dominant factor besides the charge state and the collision velocity in slow (0.35-0.49v(0); v(0) denotes the Bohr velocity) highly charged ions (HCIs) with helium collisions. The experimental cross-section ratio sigma(DET)/sigma(SEC) is compared with the extended classical over-barrier model (ECBM) [A. Barany , Nucl. Instrum. Methods Phys. Res. B 9, 397 (1985)], the molecular Coulombic barrier model (MCBM) [A. Niehaus, J. Phys. B 19, 2925 (1986)], and the semiempirical scaling laws (SSL) [N. Selberg , Phys. Rev. A 54, 4127 (1996)]. It also shows that the projectile core properties affect the initial capture probabilities as well as the subsequent relaxation of the projectiles. The experimental cross-section ratio sigma(TDC)/sigma(DET) for those lower isocharged sequences is dramatically affected by the projectile core structure, while for those sufficiently highly isocharged sequences, the autoionization always dominates, hence the cross-section ratio sigma(TDC)/sigma(DET) is always small.
Resumo:
High-spin level structure of Au-188 has been studied via the Yb-173(F-19, 4n gamma) reaction using techniques of in-beam gamma-ray spectroscopy. Based on the experimental results, the level scheme of 188Au has been revised significantly. The previously reported positive parity levels have been modified and a new 20(+) level was proposed to feed the 18(+) states via two low-energy transitions. The existence of the 20(+) and the level structures above it are similar to those in the neighboring odd-odd Au-190,Au-192, therefore, the pi h(11/12)(-1)circle times-vi(13/2)(-2)h(9/2)(-1) configuration was assigned to the 20(+) state.
Resumo:
We report the measurements of relative cross sections for single capture (SC), double capture (DC), single ionization (SI), double ionization (DI), and transfer ionization (TI) in collisions of Xe23+ ions with helium atoms in the velocity range of 0.65-1.32 a.u. The relative cross sections show a weak velocity dependence. The cross-section ratio of double-(DE) to single-electron (SE) removal from He, sigma(DE)/sigma(SE), is about 0.45. Single capture is the dominant reaction channel which is followed by transfer ionization, while only very small probabilities are found for pure ionization and double capture. The present experimental data are in satisfactory agreement with the estimations by the extended classical over-barrier (ECB) model..
Resumo:
Motivated by the recently proposed Kerr/CFT correspondence, we investigate the holographic dual of the extremal and non-extremal rotating linear dilaton black hole in Einstein-Maxwell-Dilaton-Axion Gravity. For the case of extremal black hole, by imposing the appropriate boundary condition at spatial infinity of the near horizon extremal geometry, the Virasoro algebra of conserved charges associated with the asymptotic symmetry group is obtained. It is shown that the microscopic entropy of the dual conformal field given by Cardy formula exactly agrees with Bekenstein-Hawking entropy of extremal black hole. Then, by rewriting the wave equation of massless scalar field with sufficient low energy as the SLL(2, R) x SLR(2, R) Casimir operator, we find the hidden conformal symmetry of the non-extremal linear dilaton black hole, which implies that the non-extremal rotating linear dilaton black hole is holographically dual to a two dimensional conformal field theory with the non-zero left and right temperatures. Furthermore, it is shown that the entropy of non-extremal black hole can be reproduced by using Cardy formula.
Resumo:
本工作研究了四种不同形状和尺寸的石英管对1100eV、1300eV、1500eV三种能量电子束的导向作用,并把四种实验结果进行了分析对比。四种石英管分别为等径圆柱形弯曲管、等径圆柱形直管、直锥形管以及弯曲锥形管,它们的内径均在毫米量级。实验中利用一个位置灵敏法拉第筒对从石英管出射的电子束进行探测,获得从管道中出射的电子束流强度在位置灵敏法拉第筒各道上的强弱分布,其结果显示宏观尺寸石英管对电子束存在导向作用。对于等径圆柱形石英管,入射电子束流的强度越强,其导向作用越明显;然而对于锥形管,导向作用并不明显,且不随入射电子束流强度增加有明显的变化。此外,实验结果在一定程度上显示出石英管对中低能电子束的导向能力并不取决于管的形状。石英管导向能力与管的尺寸、形状及材料之间的关系还有待进一步的研究
Resumo:
In the experiment of nuclear reaction, it is important to measure the mass, charge, energy and emitted direction of particles. For multiparameter measurement, we must use a detector or a group of detectors which can give the time, energy, and position information. The Large Area position sensitive Ionization Chamber(LAIC) is one of the eight experiment terminals of HIRFL. It is built for researching nuclear reactions from low energy to intermediate energy. It is an excellent equipment for energy measurements and atomic number identification of emitted fragments in this energy region. It is also designed to give the time and position information of the emitted fragments by itself. Obviously, an IC can not supply a good timing signal. Moreover, the mechanical installation is different from the original design by some other reasons. In this case, it is not enough to obtain the correct direction information of the emitted fragments. To obtain good timing signals and the correct direction information, some modifications must be made. It is well known that a PPAC can give us excellent timing signals. It also can be easily built as a position sensitive detector. For this reason, a specially designed PPAC is installed in the entrance of the LAIC. For the different purposes, two types of PPACs were designed and tested. Both are OCTPSACs (OCTunit one dimension Position Sensitive Avalanche Counter). In this paper, both OCTPSACs will be introduced. Based on the requirements of the LAIC, the OCTPSACs consist of eight position sensitive PPACs. Each PPAC has an anode and a cathode. In both cases, the sizes are same. But different type of cathodes are used. In one type of OCTPSAC, its cathode is made of wire plane. It consists of gold-plated tungsten wires with the diameter of 20μm, spaced 0.5 mm apart from each other. The anode is a mylar foil which was evaporated by gold layer with the thickness of 50μg/cm~2 mounted on a printed plate in the shape of rectangle. the thickness of mylar foil is 1.5μm. The gap between anode and cathode is 3mm. The performance of the OCTPSAC has been tested by using a ~(252)Cf source in flowing isobutylene gas at the pressure of 3.4mb. The intrinsic time resolution of 289ps and position resolution of 2 mm have been obtained. In another type of OCTPSAC, the cathode is made of mylar foil, which is composed of gold strip by vacuume evaporation method with a special mask on the mylar foil. The thickness and the width of the gold strip is 50μg/cm~2 and 1.7mm. The strips are spaced 0.3 mm apart from each other. The anode is the same as the former type. We have obtained the time resolution of 296ps and position resolution of 2mm by using ~(241)Am-a source when the gas pressure is 6 mb and high voltage is 600V. The working gas is heptane
Resumo:
Methyl radicals are generated by pyrolysis of azomethane, and the condition for achieving neat adsorption on Cu(110) is described for studying their chemisorption and reaction characteristics. The radical-surface system is examined by X-ray photoemission spectroscopy, ultraviolet photoemission spectroscopy, temperature-programmed desorption, low-energy electron diffraction (LEED), and high-resolution electron energy loss spectroscopy under ultrahigh vacuum conditions. It is observed that a small fraction of impinging CH3 radicals decompose into methylene possibly on surface defect sites. This type of CH2 radical has no apparent effect on CH3(ads) surface chemistry initiated by dehydrogenation to form active CH2(ads) followed by chain reactions to yield high-mass alkyl products. All thermal desorption products, such as H-2, CH4, C2H4, C2H6, and C3H6, are detected with a single desorption peak near 475 K. The product yields increase with surface coverage until saturation corresponding to 0.50 monolayer of CH3(ads). The mass distribution is, however, invariant with initial CH3(ads) coverage, and all desorbed species exhibit first-order reaction kinetics. LEED measurement reveals a c(2 x 2) adsorbate structure independent of the amount of gaseous exposure. This strongly suggests that the radicals aggregate into close-packed two-dimensional islands at any exposure. The islanding behavior can be correlated with the reaction kinetics and is deemed to be essential for the chain propagation reactions. Some relevant aspects of the CH3/Cu(111) system are also presented. The new results are compared with those of prior studies employing methyl halides as radical sources. Major differences are found in the product distribution and desorption kinetics, and these are attributed to the influence of surface halogen atoms present in those earlier investigations.
Resumo:
Changes in statistics (mean, sorting, and skewness) describing grain-size distributions have long been used to speculate on the direction of sediment transport. We present a simple model whereby the distributions of sediment in transport are related to their source by a sediment transfer function which defines the relative probability that a grain within each particular class interval will be eroded and transported. A variety of empirically derived transfer functions exhibit negatively skewed distributions (on a phi scale). Thus, when a sediment is being eroded, the probability of any grain going into transport increases with diminishing grain size throughout more than half of its size range. This causes the sediment in transport to be finer and more negatively skewed than its source, whereas the remaining sediment (a lag) must become relatively coarser and more positively skewed. Flume experiments show that the distributions of transfer functions change from having a highly negative skewness to being nearly symmetrical (although still negatively skewed) as the energy of the transporting process increases. We call the two extremes low-energy and high-energy transfer functions , respectively. In an expanded sediment-transport model, successive deposits in the direction of transport are related by a combination of two transfer functions. If energy is decreasing and the transfer functions have low-energy distributions, successive deposits will become finer and more negatively skewed. If, however, energy is decreasing, but the initial transfer function has a high-energy distribution, successive deposits will become coarser and more positively skewed. The variance of the distributions of lags, sediment in transport, and successive deposits in the down-current direction must eventually decrease (i.e., the sediments will become better sorted). We demonstrate that it is possible for variance first to increase, but suggest that, in reality, an increasing variance in the direction of transport will seldom be observed, particularly when grain-size distributions are described in phi units. This model describing changes in sediment distributions was tested in a variety of environments where the transport direction was known. The results indicate that the model has real-world validity and can provide a method to predict the directions of sediment transport
Resumo:
In this article, a two-dimensional (2D) nanoplate and a 3D hierarchical structure of BiOCl were synthesized through a simple sonochemical route. Compared with previous preparation methods, the 2D nanoplates can be prepared at a relatively short time (about 30 min) with low energy used. Additionally, these 2D nanoplates can easily assemble into a 3D hierarchical structure with the surfactant reagents. The obtained products were well crystallized and subsequently characterized by a range of methods, such as X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission microscopy (HRTEM), selected area electron diffraction (SAED) and Raman spectroscopy.