888 resultados para Genome Sequence
Resumo:
Global aquaculture has expanded rapidly to address the increasing demand for aquatic protein needs and an uncertain future for wild fisheries. To date, however, most farmed aquatic stocks are essentially wild and little is known about their genomes or the genes that affect important economic traits in culture. Biologists have recognized that recent technological advances including next generation sequencing (NGS) have opened up the possibility of generating genome wide sequence data sets rapidly from non-model organisms at a reasonable cost. In an era when virtually any study organism can 'go genomic', understanding gene function and genetic effects on expressed quantitative trait locus phenotypes will be fundamental to future knowledge development. Many factors can influence the individual growth rate in target species but of particular importance in agriculture and aquaculture will be the identification and characterization of the specific gene loci that contribute important phenotypic variation to growth because the information can be applied to speed up genetic improvement programmes and to increase productivity via marker-assisted selection (MAS). While currently there is only limited genomic information available for any crustacean species, a number of putative candidate genes have been identified or implicated in growth and muscle development in some species. In an effort to stimulate increased research on the identification of growth-related genes in crustacean species, here we review the available information on: (i) associations between genes and growth reported in crustaceans, (ii) growth-related genes involved with moulting, (iii) muscle development and degradation genes involved in moulting, and; (iv) correlations between DNA sequences that have confirmed growth trait effects in farmed animal species used in terrestrial agriculture and related sequences in crustacean species. The information in concert can provide a foundation for increasing the rate at which knowledge about key genes affecting growth traits in crustacean species is gained.
Resumo:
The study assessed natural levels and patterns of genetic variation in Arabian Gulf populations of a native pearl oyster to define wild population structure considering potential intrinsic and extrinsic factors that could influence any wild structure detected. The study was also the first attempt to develop microsatellite markers and to generate a genome survey sequence (GSS) dataset for the target species using next generation sequencing technology. The partial genome dataset generated has potential biotechnological applications and for pearl oyster farming in the future.
Resumo:
Prior to the completion of the human genome project, the human genome was thought to have a greater number of genes as it seemed structurally and functionally more complex than other simpler organisms. This along with the belief of “one gene, one protein”, were demonstrated to be incorrect. The inequality in the ratio of gene to protein formation gave rise to the theory of alternative splicing (AS). AS is a mechanism by which one gene gives rise to multiple protein products. Numerous databases and online bioinformatic tools are available for the detection and analysis of AS. Bioinformatics provides an important approach to study mRNA and protein diversity by various tools such as expressed sequence tag (EST) sequences obtained from completely processed mRNA. Microarrays and deep sequencing approaches also aid in the detection of splicing events. Initially it was postulated that AS occurred only in about 5%; of all genes but was later found to be more abundant. Using bioinformatic approaches, the level of AS in human genes was found to be fairly high with 35-59%; of genes having at least one AS form. Our ability to determine and predict AS is important as disorders in splicing patterns may lead to abnormal splice variants resulting in genetic diseases. In addition, the diversity of proteins produced by AS poses a challenge for successful drug discovery and therefore a greater understanding of AS would be beneficial.
Resumo:
Migraine is a common neurological disease with a complex genetic aetiology. The disease affects ~12% of the Caucasian population and females are three times more likely than males to be diagnosed. In an effort to identify loci involved in migraine susceptibility, we performed a pedigree-based genome-wide association study of the isolated population of Norfolk Island, which has a high prevalence of migraine. This unique population originates from a small number of British and Polynesian founders who are descendents of the Bounty mutiny and forms a very large multigenerational pedigree (Bellis et al.; Human Genetics, 124(5):543-5542, 2008). These population genetic features may facilitate disease gene mapping strategies (Peltonen et al.; Nat Rev Genet, 1(3):182-90, 2000. In this study, we identified a high heritability of migraine in the Norfolk Island population (h (2) = 0.53, P = 0.016). We performed a pedigree-based GWAS and utilised a statistical and pathological prioritisation approach to implicate a number of variants in migraine. An SNP located in the zinc finger protein 555 (ZNF555) gene (rs4807347) showed evidence of statistical association in our Norfolk Island pedigree (P = 9.6 × 10(-6)) as well as replication in a large independent and unrelated cohort with >500 migraineurs. In addition, we utilised a biological prioritisation to implicate four SNPs, in within the ADARB2 gene, two SNPs within the GRM7 gene and a single SNP in close proximity to a HTR7 gene. Association of SNPs within these neurotransmitter-related genes suggests a disrupted serotoninergic system that is perhaps specific to the Norfolk Island pedigree, but that might provide clues to understanding migraine more generally.
Resumo:
Migraine is a common neurovascular disorder with a complex envirogenomic aetiology. In an effort to identify migraine susceptibility genes, we conducted a study of the isolated population of Norfolk Island, Australia. A large portion of the permanent inhabitants of Norfolk Island are descended from 18th Century English sailors involved in the infamous mutiny on the Bounty and their Polynesian consorts. In total, 600 subjects were recruited including a large pedigree of 377 individuals with lineage to the founders. All individuals were phenotyped for migraine using International Classification of Headache Disorders-II criterion. All subjects were genotyped for a genome-wide panel of microsatellite markers. Genotype and phenotype data for the pedigree were analysed using heritability and linkage methods implemented in the programme SOLAR. Follow-up association analysis was performed using the CLUMP programme. A total of 154 migraine cases (25%) were identified indicating the Norfolk Island population is high-risk for migraine. Heritability estimation of the 377-member pedigree indicated a significant genetic component for migraine (h2 = 0.53, P = 0.016). Linkage analysis showed peaks on chromosome 13q33.1 (P = 0.003) and chromosome 9q22.32 (P = 0.008). Association analysis of the key microsatellites in the remaining 223 unrelated Norfolk Island individuals showed evidence of association, which strengthen support for the linkage findings (P ≤ 0.05). In conclusion, a genome-wide linkage analysis and follow-up association analysis of migraine in the genetic isolate of Norfolk Island provided evidence for migraine susceptibility loci on chromosomes 9q22.22 and 13q33.1.
Resumo:
Background Illumina's Infinium SNP BeadChips are extensively used in both small and large-scale genetic studies. A fundamental step in any analysis is the processing of raw allele A and allele B intensities from each SNP into genotype calls (AA, AB, BB). Various algorithms which make use of different statistical models are available for this task. We compare four methods (GenCall, Illuminus, GenoSNP and CRLMM) on data where the true genotypes are known in advance and data from a recently published genome-wide association study. Results In general, differences in accuracy are relatively small between the methods evaluated, although CRLMM and GenoSNP were found to consistently outperform GenCall. The performance of Illuminus is heavily dependent on sample size, with lower no call rates and improved accuracy as the number of samples available increases. For X chromosome SNPs, methods with sex-dependent models (Illuminus, CRLMM) perform better than methods which ignore gender information (GenCall, GenoSNP). We observe that CRLMM and GenoSNP are more accurate at calling SNPs with low minor allele frequency than GenCall or Illuminus. The sample quality metrics from each of the four methods were found to have a high level of agreement at flagging samples with unusual signal characteristics. Conclusions CRLMM, GenoSNP and GenCall can be applied with confidence in studies of any size, as their performance was shown to be invariant to the number of samples available. Illuminus on the other hand requires a larger number of samples to achieve comparable levels of accuracy and its use in smaller studies (50 or fewer individuals) is not recommended.
Resumo:
Migraine is a common, heterogeneous and heritable neurological disorder. Its pathophysiology is incompletely understood, and its genetic influences at the population level are unknown. In a population-based genome-wide analysis including 5,122 migraineurs and 18,108 non-migraineurs, rs2651899 (1p36.32, PRDM16), rs10166942 (2q37.1, TRPM8) and rs11172113 (12q13.3, LRP1) were among the top seven associations (P < 5 × 10(-6)) with migraine. These SNPs were significant in a meta-analysis among three replication cohorts and met genome-wide significance in a meta-analysis combining the discovery and replication cohorts (rs2651899, odds ratio (OR) = 1.11, P = 3.8 × 10(-9); rs10166942, OR = 0.85, P = 5.5 × 10(-12); and rs11172113, OR = 0.90, P = 4.3 × 10(-9)). The associations at rs2651899 and rs10166942 were specific for migraine compared with non-migraine headache. None of the three SNP associations was preferential for migraine with aura or without aura, nor were any associations specific for migraine features. TRPM8 has been the focus of neuropathic pain models, whereas LRP1 modulates neuronal glutamate signaling, plausibly linking both genes to migraine pathophysiology.
Resumo:
Objective: To perform a 1-stage meta-analysis of genome-wide association studies (GWAS) of multiple sclerosis (MS) susceptibility and to explore functional consequences of new susceptibility loci. Methods: We synthesized 7 MS GWAS. Each data set was imputed using HapMap phase II, and a per single nucleotide polymorphism (SNP) meta-analysis was performed across the 7 data sets. We explored RNA expression data using a quantitative trait analysis in peripheral blood mononuclear cells (PBMCs) of 228 subjects with demyelinating disease. Results: We meta-analyzed 2,529,394 unique SNPs in 5,545 cases and 12,153 controls. We identified 3 novel susceptibility alleles: rs170934T at 3p24.1 (odds ratio [OR], 1.17; p ¼ 1.6 � 10�8) near EOMES, rs2150702G in the second intron of MLANA on chromosome 9p24.1 (OR, 1.16; p ¼ 3.3 � 10�8), and rs6718520A in an intergenic region on chromosome 2p21, with THADA as the nearest flanking gene (OR, 1.17; p ¼ 3.4 � 10�8). The 3 new loci do not have a strong cis effect on RNA expression in PBMCs. Ten other susceptibility loci had a suggestive p < 1 � 10�6, some of these loci have evidence of association in other inflammatory diseases (ie, IL12B, TAGAP, PLEK, and ZMIZ1). Interpretation: We have performed a meta-analysis of GWAS in MS that more than doubles the size of previous gene discovery efforts and highlights 3 novel MS susceptibility loci. These and additional loci with suggestive evidence of association are excellent candidates for further investigations to refine and validate their role in the genetic architecture of MS.
Resumo:
Background: Multiple sclerosis (MS) is the most common cause of chronic neurologic disability beginning in early to middle adult life. Results from recent genome-wide association studies (GWAS) have substantially lengthened the list of disease loci and provide convincing evidence supporting a multifactorial and polygenic model of inheritance. Nevertheless, the knowledge of MS genetics remains incomplete, with many risk alleles still to be revealed. Methods: We used a discovery GWAS dataset (8,844 samples, 2,124 cases and 6,720 controls) and a multi-step logistic regression protocol to identify novel genetic associations. The emerging genetic profile included 350 independent markers and was used to calculate and estimate the cumulative genetic risk in an independent validation dataset (3,606 samples). Analysis of covariance (ANCOVA) was implemented to compare clinical characteristics of individuals with various degrees of genetic risk. Gene ontology and pathway enrichment analysis was done using the DAVID functional annotation tool, the GO Tree Machine, and the Pathway-Express profiling tool. Results: In the discovery dataset, the median cumulative genetic risk (P-Hat) was 0.903 and 0.007 in the case and control groups, respectively, together with 79.9% classification sensitivity and 95.8% specificity. The identified profile shows a significant enrichment of genes involved in the immune response, cell adhesion, cell communication/ signaling, nervous system development, and neuronal signaling, including ionotropic glutamate receptors, which have been implicated in the pathological mechanism driving neurodegeneration. In the validation dataset, the median cumulative genetic risk was 0.59 and 0.32 in the case and control groups, respectively, with classification sensitivity 62.3% and specificity 75.9%. No differences in disease progression or T2-lesion volumes were observed among four levels of predicted genetic risk groups (high, medium, low, misclassified). On the other hand, a significant difference (F = 2.75, P = 0.04) was detected for age of disease onset between the affected misclassified as controls (mean = 36 years) and the other three groups (high, 33.5 years; medium, 33.4 years; low, 33.1 years). Conclusions: The results are consistent with the polygenic model of inheritance. The cumulative genetic risk established using currently available genome-wide association data provides important insights into disease heterogeneity and completeness of current knowledge in MS genetics.
Resumo:
To identify multiple sclerosis (MS) susceptibility loci, we conducted a genome-wide association study (GWAS) in 1,618 cases and used shared data for 3,413 controls. We performed replication in an independent set of 2,256 cases and 2,310 controls, for a total of 3,874 cases and 5,723 controls. We identified risk-associated SNPs on chromosome 12q13-14 (rs703842, P = 5.4 x 10(-11); rs10876994, P = 2.7 x 10(-10); rs12368653, P = 1.0 x 10(-7)) and upstream of CD40 on chromosome 20q13 (rs6074022, P = 1.3 x 10(-7); rs1569723, P = 2.9 x 10(-7)). Both loci are also associated with other autoimmune diseases. We also replicated several known MS associations (HLA-DR15, P = 7.0 x 10(-184); CD58, P = 9.6 x 10(-8); EVI5-RPL5, P = 2.5 x 10(-6); IL2RA, P = 7.4 x 10(-6); CLEC16A, P = 1.1 x 10(-4); IL7R, P = 1.3 x 10(-3); TYK2, P = 3.5 x 10(-3)) and observed a statistical interaction between SNPs in EVI5-RPL5 and HLA-DR15 (P = 0.001).
A genome-wide scan provides evidence for loci influencing a severe heritable form of common migraine
Resumo:
Migraine is a prevalent neurovascular disease with a significant genetic component. Linkage studies have so far identified migraine susceptibility loci on chromosomes 1, 4, 6, 11, 14, 19 and X. We performed a genome-wide scan of 92 Australian pedigrees phenotyped for migraine with and without aura and for a more heritable form of “severe” migraine. Multipoint non-parametric linkage analysis revealed suggestive linkage on chromosome 18p11 for the severe migraine phenotype (LOD*=2.32, P=0.0006) and chromosome 3q (LOD*=2.28, P=0.0006). Excess allele sharing was also observed at multiple different chromosomal regions, some of which overlap with, or are directly adjacent to, previously implicated migraine susceptibility regions. We have provided evidence for two loci involved in severe migraine susceptibility and conclude that dissection of the “migraine” phenotype may be helpful for identifying susceptibility genes that influence the more heritable clinical (symptom) profiles in affected pedigrees. Also, we concluded that the genetic aetiology of the common (International Headache Society) forms of the disease is probably comprised of a number of low to moderate effect susceptibility genes, perhaps acting synergistically, and this effect is not easily detected by traditional single-locus linkage analyses of large samples of affected pedigrees.
Resumo:
Linkage disequilibrium (LD) mapping is commonly used as a fine mapping tool in human genome mapping and has been used with some success for initial disease gene isolation in certain isolated in-bred human populations. An understanding of the population history of domestic dog breeds suggests that LD mapping could be routinely utilized in this species for initial genome-wide scans. Such an approach offers significant advantages over traditional linkage analysis. Here, we demonstrate, using canine copper toxicosis in the Bedlington terrier as the model, that LD mapping could be reasonably expected to be a useful strategy in low-resolution, genome-wide scans in pure-bred dogs. Significant LD was demonstrated over distances up to 33.3 cM. It is very unlikely, for a number of reasons discussed, that this result could be extrapolated to the rest of the genome. It is, however, consistent with the expectation given the population structure of canine breeds and, in this breed at least, with the hypothesis that it may be possible to utilize LD in a genome-wide scan. In this study, LD mapping confirmed the location of the copper toxicosis in Bedlington terrier gene (CT-BT) and was able to do so in a population that was refractory to traditional linkage analysis.
Resumo:
1. Essential hypertension occurs in people with an underlying genetic predisposition who subject themselves to adverse environmental influences. The number of genes involved is unknown, as is the extent to which each contributes to final blood pressure and the severity of the disease. 2. In the past, studies of potential candidate genes have been performed by association (case-control) analysis of unrelated individuals or linkage (pedigree or sibpair) analysis of families. These studies have resulted in several positive findings but, as one may expect, also an enormous number of negative results. 3. In order to uncover the major genetic loci for essential hypertension, it is proposed that scanning the genome systematically in 100- 200 affected sibships should prove successful. 4. This involves genotyping sets of hypertensive sibships to determine their complement of several hundred microsatellite polymorphisms. Those that are highly informative, by having a high heterozygosity, are most suitable. Also, the markers need to be spaced sufficiently evenly across the genome so as to ensure adequate coverage. 5. Tests are performed to determine increased segregation of alleles of each marker with hypertension. The analytical tools involve specialized statistical programs that can detect such differences. Non- parametric multipoint analysis is an appropriate approach. 6. In this way, loci for essential hypertension are beginning to emerge.
Resumo:
Background: Genome-wide association studies (GWAS) have identified more than 100 genetic loci for various cancers. However, only one is for endometrial cancer. Methods: We conducted a three-stage GWAS including 8,492 endometrial cancer cases and 16,596 controls. After analyzing 585,963 single-nucleotide polymorphisms (SNP) in 832 cases and 2,682 controls (stage I) from the Shanghai Endometrial Cancer Genetics Study, we selected the top 106 SNPs for in silico replication among 1,265 cases and 5,190 controls from the Australian/British Endometrial Cancer GWAS (stage II). Nine SNPs showed results consistent in direction with stage I with P < 0.1. These nine SNPs were investigated among 459 cases and 558 controls (stage IIIa) and six SNPs showed a direction of association consistent with stages I and II. These six SNPs, plus two additional SNPs selected on the basis of linkage disequilibrium and P values in stage II, were investigated among 5,936 cases and 8,166 controls from an additional 11 studies (stage IIIb). Results: SNP rs1202524, near the CAPN9 gene on chromosome 1q42.2, showed a consistent association with endometrial cancer risk across all three stages, with ORs of 1.09 [95% confidence interval (CI), 1.03–1.16] for the A/G genotype and 1.17 (95% CI, 1.05–1.30) for the G/G genotype (P = 1.6 × 10−4 in combined analyses of all samples). The association was stronger when limited to the endometrioid subtype, with ORs (95% CI) of 1.11 (1.04–1.18) and 1.21 (1.08–1.35), respectively (P = 2.4 × 10−5). Conclusions: Chromosome 1q42.2 may host an endometrial cancer susceptibility locus. Impact: This study identified a potential genetic locus for endometrial cancer risk
Resumo:
Endometrial cancer is one of the most common female diseases in developed nations and is the most commonly diagnosed gynaecological cancer in Australia. The disease is commonly classified by histology: endometrioid or non-endometrioid endometrial cancer. While non-endometrioid endometrial cancers are accepted to be high-grade, aggressive cancers, endometrioid cancers (comprising 80% of all endometrial cancers diagnosed) generally carry a favourable patient prognosis. However, endometrioid endometrial cancer patients endure significant morbidity due to surgery and radiotherapy used for disease treatment, and patients with recurrent disease have a 5-year survival rate of less than 50%. Genetic analysis of women with endometrial cancer could uncover novel markers associated with disease risk and/or prognosis, which could then be used to identify women at high risk and for the use of specialised treatments. Proteases are widely accepted to play an important role in the development and progression of cancer. This PhD project hypothesised that SNPs from two protease gene families, the matrix metalloproteases (MMPs, including their tissue inhibitors, TIMPs) and the tissue kallikrein-related peptidases (KLKs) would be associated with endometrial cancer susceptibility and/or prognosis. In the first part of this study, optimisation of the genotyping techniques was performed. Results from previously published endometrial cancer genetic association studies were attempted to be validated in a large, multicentre replication set (maximum cases n = 2,888, controls n = 4,483, 3 studies). The rs11224561 progesterone receptor SNP (PGR, A/G) was observed to be associated with increased endometrial cancer risk (per A allele OR 1.31, 95% CI 1.12-1.53; p-trend = 0.001), a result which was initially reported among a Chinese sample set. Previously reported associations for the remaining 8 SNPs investigated for this section of the PhD study were not confirmed, thereby reinforcing the importance of validation of genetic association studies. To examine the effect of SNPs from the MMP and KLK families on endometrial cancer risk, we selected the most significantly associated MMP and KLK SNPs from genome-wide association study analysis (GWAS) to be genotyped in the GWAS replication set (cases n = 4,725, controls n = 9,803, 13 studies). The significance of the MMP24 rs932562 SNP was unchanged after incorporation of the stage 2 samples (Stage 1 per allele OR 1.18, p = 0.002; Combined Stage 1 and 2 OR 1.09, p = 0.002). The rs10426 SNP, located 3' to KLK10 was predicted by bioinformatic analysis to effect miRNA binding. This SNP was observed in the GWAS stage 1 result to exhibit a recessive effect on endometrial cancer risk, a result which was not validated in the stage 2 sample set (Stage 1 OR 1.44, p = 0.007; Combined Stage 1 and 2 OR 1.14, p = 0.08). Investigation of the regions imputed surrounding the MMP, TIMP and KLK genes did not reveal any significant targets for further analysis. Analysis of the case data from the endometrial cancer GWAS to identify genetic variation associated with cancer grade did not reveal SNPs from the MMP, TIMP or KLK genes to be statistically significant. However, the representation of SNPs from the MMP, TIMP and KLK families by the GWAS genotyping platform used in this PhD project was examined and observed to be very low, with the genetic variation of four genes (MMP23A, MMP23B, MMP28 and TIMP1) not captured at all by this technique. This suggests that comprehensive candidate gene association studies will be required to assess the role of SNPs from these genes with endometrial cancer risk and prognosis. Meta-analysis of gene expression microarray datasets curated as part of this PhD study identified a number of MMP, TIMP and KLK genes to display differential expression by endometrial cancer status (MMP2, MMP10, MMP11, MMP13, MMP19, MMP25 and KLK1) and histology (MMP2, MMP11, MMP12, MMP26, MMP28, TIMP2, TIMP3, KLK6, KLK7, KLK11 and KLK12). In light of these findings these genes should be prioritised for future targeted genetic association studies. Two SNPs located 43.5 Mb apart on chromosome 15 were observed from the GWAS analysis to be associated with increased endometrial cancer grade, results that were validated in silico in two independent datasets. One of these SNPs, rs8035725 is located in the 5' untranslated region of a MYC promoter binding protein DENND4A (Stage 1 OR 1.15, p = 9.85 x 10P -5 P, combined Stage 1 and in silico validation OR 1.13, p = 5.24 x 10P -6 P). This SNP has previously been reported to alter the expression of PTPLAD1, a gene involved in the synthesis of very long fatty acid chains and in the Rac1 signaling pathway. Meta-analysis of gene expression microarray data found PTPLAD1 to display increased expression in the aggressive non-endometrioid histology compared with endometrioid endometrial cancer, suggesting that the causal SNP underlying the observed genetic association may influence expression of this gene. Neither rs8035725 nor significant SNPs identified by imputation were predicted bioinformatically to affect transcription factor binding sites, indicating that further studies are required to assess their potential effect on other regulatory elements. The other grade- associated SNP, rs6606792, is located upstream of an inferred pseudogene, ELMO2P1 (Stage 1 OR 1.12, p = 5 x 10P -5 P; combined Stage 1 and in silico validation OR 1.09, p = 3.56 x 10P -5 P). Imputation of the ±1 Mb region surrounding this SNP revealed a cluster of significantly associated variants which are predicted to abolish various transcription factor binding sites, and would be expected to decrease gene expression. ELMO2P1 was not included on the microarray platforms collected for this PhD, and so its expression could not be investigated. However, the high sequence homology of ELMO2P1 with ELMO2, a gene important to cell motility, indicates that ELMO2 could be the parent gene for ELMO2P1 and as such, ELMO2P1 could function to regulate the expression of ELMO2. Increased expression of ELMO2 was seen to be associated with increasing endometrial cancer grade, as well as with aggressive endometrial cancer histological subtypes by microarray meta-analysis. Thus, it is hypothesised that SNPs in linkage disequilibrium with rs6606792 decrease the transcription of ELMO2P1, reducing the regulatory effect of ELMO2P1 on ELMO2 expression. Consequently, ELMO2 expression is increased, cell motility is enhanced leading to an aggressive endometrial cancer phenotype. In summary, these findings have identified several areas of research for further study. The results presented in this thesis provide evidence that a SNP in PGR is associated with risk of developing endometrial cancer. This PhD study also reports two independent loci on chromosome 15 to be associated with increased endometrial cancer grade, and furthermore, genes associated with these SNPs to be differentially expressed according in aggressive subtypes and/or by grade. The studies reported in this thesis support the need for comprehensive SNP association studies on prioritised MMP, TIMP and KLK genes in large sample sets. Until these studies are performed, the role of MMP, TIMP and KLK genetic variation remains unclear. Overall, this PhD study has contributed to the understanding of genetic variation involvement in endometrial cancer susceptibility and prognosis. Importantly, the genetic regions highlighted in this study could lead to the identification of novel gene targets to better understand the biology of endometrial cancer and also aid in the development of therapeutics directed at treating this disease.