973 resultados para FUSED-SILICA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Force measurements between silica surfaces in aqueous solutions of NaCl are reported. Silica is prepared with one of three surface treatments: (i) flaming, (ii) exposure to steam for 150 h, and (iii) brief exposure to ammonia vapor. Analysis of electrical double-layer interactions indicates that the surface density of silanol groups increases with steam treatment, and that exposure to ammonia etches the surface slightly and renders it porous. The force at short range is dominated by a strong repulsion which is attributed to hydration of the surface. The hydration component of the force is not significantly affected by the surface treatments, nor by electrolyte concentration over the range investigated (up to 0.1 M).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper measurements of the forces acting between two solid surfaces separated by a thin liquid film are discussed. By investigating these forces in a range of different liquids and solutions, it is possible to acquire an understanding of the surface properties of the solid material. The surface of mica has been studied extensively in this way, and the results obtained are reviewed to illustrate how the surface force measurements can give surface chemical information. Recent measurements on two other materials, sapphire and silica, which are of greater practical interest are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we report the functionalization of silica nanoparticles with highly photoreactive phenyl azido groups and their utility as a negatively charged building block for layer-by-layer (LbL) electrostatic assembly to produce a stable silica nanoparticle coating. Azido-terminated silica nanoparticles were prepared by the functionalization of bare silica nanoparticles with 3-aminopropyltrimethoxysilane followed by the reaction with 4-azidobenzoic acid. The azido functionalization was confirmed by FTIR and XPS. Poly(allylamine hydrochloride) was also grafted with phenyl azido groups and used as photoreactive polycations for LbL assembly. For the photoreactive silica nanoparticle/polycation multilayers, UV irradiation can induce the covalent cross-linking within the multilayers as well as the anchoring of the multilayer film onto the organic substrate, through azido photochemical reactions including C–H insertion/abstraction reactions with surrounding molecules and dimerization of azido groups. Our results show that the stability of the silica nanoparticle/polycation multilayer film was greatly improved after UV irradiation. Combined with a fluoroalkylsilane post-treatment, the photoreactive LbL multilayers were used as a coating for superhydrophobic modification of cotton fabrics. Herein the LbL assembly method enables us to tailor the number of the coated silica nanoparticles through the assembly cycles. The superhydrophobicity of cotton fabrics was durable against acids, bases, and organic solvents, as well as repeated machine wash. Because of the unique azido photochemistry, the approach used here to anchor silica nanoparticles is applicable to almost any organic substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A commercial silica monolithic rod column (100 × 4.6 mm) was cut into smaller sections using a saw. Each time a section was cut from the column, the performance of the remaining intact monolith was retested. No significant change in the performance of the bed was recorded following the removal of 40 mm of the column in three separate cut sections. The work illustrates that monoliths are extremely robust and that they can be remodelled to different lengths if required, or a blocked section of the column (i.e. inlet) could be removed in much the same manner as for GC columns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel polythienylenevinylene (PTV) and two new polythiophenes (PTs), featuring fused tetrathiafulvalene (TTF) units, have been prepared and characterized by ultraviolet−visible (UV−vis) and electron paramagnetic resonance (EPR) spectroelectrochemistry. All polymers undergo two sequential, reversible oxidation processes in solution. Structures in which the TTF species is directly linked to the polymer backbone (2 and 4) display redox behavior which is dictated by the fulvalene system. Once the TTF is spatially removed from the polymer chain by a nonconjugated link (polymer 3), the electroactivity of both TTF and polythiophene moieties can be detected. Computational studies confirm the delocalization of charge over both electroactive centers (TTF and PT) and the existence of a triplet dication intermediate. PTV 4 has a low band gap (1.44 eV), is soluble in common organic solvents, and is stable under ambient conditions. Organic solar cells of polymer 4:[6,6]-phenyl-C61 butyric acid methyl ester (PCBM) have been fabricated. Under illumination, a photovoltaic effect is observed with a power conversion efficiency of 0.13% under AM1.5 solar simulated light. The onset of photocurrent at 850 nm is consistent with the onset of the π−π absorption band of the polymer. Remarkably, UV−vis spectroelectrochemistry of polymer 4 reveals that the conjugated polymer chain remains unchanged during the oxidation of the polymer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A highly performing natural rubber/silica (NR/SiO2) nanocomposite with a SiO2 loading of 2 wt% was prepared by combining similar dissolve mutually theory with latex compounding techniques. Before polymerization, double bonds were introduced onto the surface of the SiO2 particles with the silane-coupling agent. The core-shell structure silica-poly(methyl methacrylate), SiO2-PMMA, nanoparticles were formed by grafting polymerization of MMA on the surface of the modified SiO2 particles via in situ emulsion, and then NR/SiO2 nanocomposite was prepared by blending SiO2-PMMA and PMMA-modified NR (NR-PMMA). The Fourier transform infrared spectroscopy results show that PMMA has been successfully introduced onto the surface of SiO2, which can be well dispersed in NR matrix and present good interfacial adhesion with NR phase. Compared with those of pure NR, the thermal resistance and tensile properties of NR/SiO2 nanocomposite are significantly improved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical mechanical polishing technique is more frequently adopted for planarization in integrated circuit fabrication. The silica abrasives in colloidal state are fabricated with the sodium silicate solution as raw materials through the polymerization reaction among silicic acid molecules. By continuous injection of silicic acid into the preexisting silica solution, the diameter of silica nanoparticles increases. The different sized silica nanoparticles are imaged by scanning electron microscopy, and the dried silica are characterized by X-ray diffraction and thermal analysis. The polishing test on silicon wafer with as-fabricated silica abrasives shows that the surface flatness reaches 1.1 nm roughness, however, micro scratches are still present in the surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A robust, superamphiphobic fabric with a novel self-healing ability to autorepair from chemical damage is prepared by a two-step wet-chemistry coating technique using an easily available material system consisting of poly(vinylidene fluoride-co-hexafluoropropylene), fluoroalkyl silane, and modified silica nanoparticles. The coated fabrics can withstand at least 600 cycles of standard laundry and 8000 cycles of abrasion without apparently changing the superamphiphobicity. The coating is also very stable to strong acid/base, ozone, and boiling treatments. After being damaged chemically, the coating can restore its super liquid-repellent properties by a short-time heating treatment or room temperature ageing. This simple but novel and effective coating system may be useful for the development of robust protective clothing for various applications.