872 resultados para Computer Science, Artificial Intelligence
Resumo:
Ashby was a keen observer of the world around him, as per his technological and psychiatrical developments. Over the years, he drew numerous philosophical conclusions on the nature of human intelligence and the operation of the brain, on artificial intelligence and the thinking ability of computers and even on science in general. In this paper, the quite profound philosophy espoused by Ashby is considered as a whole, in particular in terms of its relationship with the world as it stands now and even in terms of scientific predictions of where things might lead. A meaningful comparison is made between Ashby's comments and the science fiction concept of 'The Matrix' and serious consideration is given as to how much Ashby's ideas lay open the possibility of the matrix becoming a real world eventuality.
Resumo:
In this article, we provide an initial insight into the study of MI and what it means for a machine to be intelligent. We discuss how MI has progressed to date and consider future scenarios in a realistic and logical way as much as possible. To do this, we unravel one of the major stumbling blocks to the study of MI, which is the field that has become widely known as "artificial intelligence"
Resumo:
In this paper, practical generation of identification keys for biological taxa using a multilayer perceptron neural network is described. Unlike conventional expert systems, this method does not require an expert for key generation, but is merely based on recordings of observed character states. Like a human taxonomist, its judgement is based on experience, and it is therefore capable of generalized identification of taxa. An initial study involving identification of three species of Iris with greater than 90% confidence is presented here. In addition, the horticulturally significant genus Lithops (Aizoaceae/Mesembryanthemaceae), popular with enthusiasts of succulent plants, is used as a more practical example, because of the difficulty of generation of a conventional key to species, and the existence of a relatively recent monograph. It is demonstrated that such an Artificial Neural Network Key (ANNKEY) can identify more than half (52.9%) of the species in this genus, after training with representative data, even though data for one character is completely missing.
Resumo:
This paper develops and tests formulas for representing playing strength at chess by the quality of moves played, rather than by the results of games. Intrinsic quality is estimated via evaluations given by computer chess programs run to high depth, ideally so that their playing strength is sufficiently far ahead of the best human players as to be a `relatively omniscient' guide. Several formulas, each having intrinsic skill parameters s for `sensitivity' and c for `consistency', are argued theoretically and tested by regression on large sets of tournament games played by humans of varying strength as measured by the internationally standard Elo rating system. This establishes a correspondence between Elo rating and the parameters. A smooth correspondence is shown between statistical results and the century points on the Elo scale, and ratings are shown to have stayed quite constant over time. That is, there has been little or no `rating inflation'. The theory and empirical results are transferable to other rational-choice settings in which the alternatives have well-defined utilities, but in which complexity and bounded information constrain the perception of the utility values.
Resumo:
With the advance of information technology capabilities, and the importance of human computer interfaces within society there has been a significant increase in research activity within the field of human computer interaction (HCI). This paper summarizes some of the work undertaken to date, paying particular attention to methods applicable to on-line control and monitoring systems such as those employed by The National Grid Company plc.
Resumo:
Deception-detection is the crux of Turing’s experiment to examine machine thinking conveyed through a capacity to respond with sustained and satisfactory answers to unrestricted questions put by a human interrogator. However, in 60 years to the month since the publication of Computing Machinery and Intelligence little agreement exists for a canonical format for Turing’s textual game of imitation, deception and machine intelligence. This research raises from the trapped mine of philosophical claims, counter-claims and rebuttals Turing’s own distinct five minutes question-answer imitation game, which he envisioned practicalised in two different ways: a) A two-participant, interrogator-witness viva voce, b) A three-participant, comparison of a machine with a human both questioned simultaneously by a human interrogator. Using Loebner’s 18th Prize for Artificial Intelligence contest, and Colby et al.’s 1972 transcript analysis paradigm, this research practicalised Turing’s imitation game with over 400 human participants and 13 machines across three original experiments. Results show that, at the current state of technology, a deception rate of 8.33% was achieved by machines in 60 human-machine simultaneous comparison tests. Results also show more than 1 in 3 Reviewers succumbed to hidden interlocutor misidentification after reading transcripts from experiment 2. Deception-detection is essential to uncover the increasing number of malfeasant programmes, such as CyberLover, developed to steal identity and financially defraud users in chatrooms across the Internet. Practicalising Turing’s two tests can assist in understanding natural dialogue and mitigate the risk from cybercrime.
Resumo:
Practical application of the Turing Test throws up all sorts of questions regarding the nature of intelligence in both machines and humans. For example - Can machines tell original jokes? What would this mean to a machine if it did so? It has been found that acting as an interrogator even top philosophers can be fooled into thinking a machine is human and/or a human is a machine - why is this? Is it that the machine is performing well or is it that the philosopher is performing badly? All these questions, and more, will be considered. Just what does the Turing test tell us about machines and humans? Actual transcripts will be considered with startling results.
Resumo:
Nine chess programs competed in July 2015 in the ICGA's World Computer Chess Championship at the Computer Science department of Leiden University. This is the official report of the event.
Resumo:
This paper is concerned with the computational efficiency of fuzzy clustering algorithms when the data set to be clustered is described by a proximity matrix only (relational data) and the number of clusters must be automatically estimated from such data. A fuzzy variant of an evolutionary algorithm for relational clustering is derived and compared against two systematic (pseudo-exhaustive) approaches that can also be used to automatically estimate the number of fuzzy clusters in relational data. An extensive collection of experiments involving 18 artificial and two real data sets is reported and analyzed. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a study on wavelets and their characteristics for the specific purpose of serving as a feature extraction tool for speaker verification (SV), considering a Radial Basis Function (RBF) classifier, which is a particular type of Artificial Neural Network (ANN). Examining characteristics such as support-size, frequency and phase responses, amongst others, we show how Discrete Wavelet Transforms (DWTs), particularly the ones which derive from Finite Impulse Response (FIR) filters, can be used to extract important features from a speech signal which are useful for SV. Lastly, an SV algorithm based on the concepts presented is described.
Resumo:
This work investigates neural network models for predicting the trypanocidal activity of 28 quinone compounds. Artificial neural networks (ANN), such as multilayer perceptrons (MLP) and Kohonen models, were employed with the aim of modeling the nonlinear relationship between quantum and molecular descriptors and trypanocidal activity. The calculated descriptors and the principal components were used as input to train neural network models to verify the behavior of the nets. The best model for both network models (MLP and Kohonen) was obtained with four descriptors as input. The descriptors were T(5) (torsion angle), QTS1 (sum of absolute values of the atomic charges), VOLS2 (volume of the substituent at region B) and HOMO-1 (energy of the molecular orbital below HOMO). These descriptors provide information on the kind of interaction that occurs between the compounds and the biological receptor. Both neural network models used here can predict the trypanocidal activity of the quinone compounds with good agreement, with low errors in the testing set and a high correctness rate. Thanks to the nonlinear model obtained from the neural network models, we can conclude that electronic and structural properties are important factors in the interaction between quinone compounds that exhibit trypanocidal activity and their biological receptors. The final ANN models should be useful in the design of novel trypanocidal quinones having improved potency.