999 resultados para Cadastral changes
Resumo:
Long-term changes In the crustacean zooplankton community (calanoid and cyclopoid copepods and cladocerans) were studied in Lake Donghu, a shallow and eutrophic Chinese lake. This lake had been earlier stocked with two pump Alter-feeding Ashes, silver carp (Hypopthalmichthys molitrix) and bighead carp (Aristichthys nobilis). During the 1950s and the mid-1980s, the ratio of copepods to cladocerans was relatively stable but showed a general increase thereafter. From the early-1980s to the 1990s, calanoid/cyclopoid ratios decreased obviously. In the 1990s, Cyclops vicinus, Diaphanosoma brachyurum, and Moina micrura were dominant the abundance of C. vicinus and M. micrura increased significantly; and D, brachyurum showed a substantial decrease. The study shows that under extremely high pressure of Ash predation, the species which could recover rapidly from fish predation would be the most likely to survive and increase their numbers.
Resumo:
In contrast to the relatively well documented impact of particulate-feeding fish on zooplankton communities, little attention has been devoted to the impact of filter-feeding fish. Filter-feeding silver and bighead carp are the most intensively cultured fish species in Asia and comprise much of the production of Chinese aquaculture. However, little information is known about the impact of either fish on the zooplankton community. Long-term changes in the Copepoda community (1957-1996) were studied at two sampling stations of a subtropical Chinese lake (Lake Donghu) dominated by silver and bighead carp. For both calanoids and cyclopoids, the littoral station (I) was much more resource profitable than the pelagic station (II). There has been a tremendous increase in the annual fish catch over the past 30 years due to the increased stocking with fingerlings of the two carp species. There was a notably higher fish density at Station I than at Station II. Cyclopoid abundance was notably higher at Station I than at Station II during the 1950s to the 1980s, while the reverse became true in the 1990s. This is probably because when fish abundance increased to an extremely high level, the impact of fish predation on the cyclopoids became more important than that of food resources at the littoral station. At both stations, cyclopoid abundance was relatively low in spite of the presence of abundant prey. Similarly, calanoid density did not differ significantly between the two stations in the 1950s and 1960s, but was significantly lower at Station I than at Station II during the 1980s and 1990s. Such changes are attributed to the gradient of fish predation between the stations and an increasing predation pressure by the fish. The increased fish predation also correlated with a shift in summer-dominant calanoids from larger species to smaller ones. In conclusion, the predaceous cyclopoids are affected by fish predation to a much lesser extent than the herbivorous calanoids, and therefore increased predation by filter-feeding fish results in a definite increase in the cyclopoid/calanoid ratio. Predation by filter-feeding fish has been a driving force in shaping the copepod community structure of Lake Donghu during the past decades.
Resumo:
The changes of L. kindti density from 1957 to 1996 were studied in a shallow, eutrophic Chinese lake, Lake Donghu. Despite the fact that the fish yield of planktivorous fish (silver carp and bighead carp) has increased steadily, the population density of L. kindti has also increased since 1957 and peaked in 1982/1983, The increase of both fish and L. kindti densities during this period may have benefitted from a considerable increase in the densities of their zooplankton prey. and fish predation on L. kindti might have been minor. As the fish yield increased further, their predation began to suppress most zooplankton prey including L. kindti. The largely increased fish predation on L. kindti is also evidenced by the remarkable decline of their body length after 1984. The density of L. kindti was significantly higher at the pelagic station (II) than at the littoral station (I), although for L. kindti, the littoral zone was significantly more resource profitable than the pelagic zone. The gradient of fish predation (more fish in the littoral zone) is the most likely explanation, since L. kindti is reported to be a preferred prey for many planktivorous fishes. The maximum density of L. kindti was 1.78 ind./I (on Aug. 17, 1984) at Station I and 1.55 ind./I (on Sep. 13, 1985) at Station II, respectively, which are close to those in several other eutrophic lakes.
Resumo:
The spindle behavior and MPF activity changes in the progression of oocyte maturation were investigated and compared with cytological observation and kinase assay between gynogenetic silver crucian carp and amphimictic colored crucian carp. MPF activity was measured by using histone I-Il as phosphorylation substrate. There were two similar oscillatory MPF kinase activity changes during oocyte maturation in two kinds of fishes with different reproductive modes, but there existed some subtle difference between them. The subtle difference was that the first peak of MPF kinase activity was kept to a longer-lasting time in the gynogenetic silver crucian carp than in the amphimictic colored crucian carp. It was suggested that the difference may be related to the spindle behavior changes, such as tripolar spindle formation and spindle rearrangement in the gynogenetic crucian carp.
Resumo:
1. We conducted enclosure experiments in a shallow eutrophic lake, in which a biomass gradient of the filter-feeding planktivore, silver carp, Hypophthalmichthys molitrix Valenciennes, was created, and subsequent community changes in both zooplankton and phytoplankton were examined. 2. During a summer experiment, a bloom of Anabaena flos-aquae developed (approximate to 8000 cells mL(-1)) solely in an enclosure without silver carp. Concurrent with, or slightly preceding the Anabaena bloom, the number of rotifer species and their abundance increased from seven to twelve species (1700-14 400 organisms L-1) after the bloom in this fish-free enclosure. Protozoans and bacteria were generally insensitive to the gradient of silver carp biomass. 3. During an autumn experiment, on the other hand, large herbivorous crustaceans were more efficient than silver carp in suppressing the algae, partly because the lower water temperature (approximate to 24 degrees C) inhibited active feeding of this warm-water fish and also formation of algal colonies. Heterotrophic nanoflagellate and bacterial densities were also influenced negatively by the crustaceans. 4. Correspondence analysis (CA) was applied to the weekly community data of zooplankton and phytoplankton. A major effect detected in the zooplankton community was the presence/absence of silver carp rather than the biomass of silver carp, whereas that in the phytoplankton community was the fish biomass before the Anabaena bloom, but shifted to the presence/absence of the fish after the bloom.
Resumo:
From surveys made in 1962-1963, 1973-1974, 1979-1996 at two Stations in Lake Donghu, a shallow eutrophic water body near Wuhan, P. R. China, the authors, derive long-term changes in species composition, standing crop and body-size of planktonic crustaceans. The species number decreased from the 1960s to the 1990s. The cladocerans dropped from 46 (1960s) to 26 (1980s) to 13 (1990s); the copepods decreased from 14 (1960s) to 10 (1980s) to 7 (1990s). From the mid-1980s on, the dominant crustaceans also changed: Daphnia hyalina and D. carinata ssp. were replaced by Moina micrura and Diaphanosoma brachyurum at Stations 1 and 2, respectively; Cyclops vicinus replaced Mesocyclops leuckarti. Densities and biomass of Cladocera decreased markedly after 1987. Annual average densities and biomass of cladocerans were statistically differences between 1962-1986 and 1987-1996 (P < 0.01). Annual average densities of Daphnia (Station 1 + Station 2) were negatively correlated with fish yield. Since the 1980s, annual average body length of Cladocera and Calanoida decreased, while annual average body length of Cyclopoida increased. In the same years, average body length of copepods was lower during May-October than during January-April and November-December. A 12-yr data analysis showed annual average concentration of chlorophyll-a (Chl-a) to be negatively correlated with annual average density of Daphnia, whilst lake transparency was positively correlated with annual average densities of Daphnia. The results imply that, since Daphnia feeds efficiently on phytoplankton, it could decrease concentration of Chl-a, and enhance water transparency.
Resumo:
The community structure of zooplankton was studied in a eutrophic, fishless Japanese pond. The ecosystem was dominated by a dinoflagellate, Ceratium hirundinella, two filter-feeding cladocerans, Daphnia rosea and Ceriodaphnia reticulata, and an invertebrate predator, the dipteran Chaoborus flavicans. The midsummer zooplankton community showed a large change in species composition (the Daphnia population crashed) when a heavy Ceratium bloom occurred. It is shown that (i) the rapid density decline of D.rosea in mid-May was mainly caused by a shortage of edible phytoplankton, which was facilitated by the rapid increase in C.hirundinella abundance; (ii) the low density of D.rosea in June-July was considered to be mainly caused by the blooming of Ceratium hirundinella (which may inhibit the feeding process of D.rosea), while predation by C.flavicans larvae, the changing temperature, the interspecific competition and the scarcity of edible algae were not judged to be important; (iii) the high summer biomass of the planktonic C.flavicans larvae was maintained by the bloom of C.hirundinella, because >90% of the crop contents of C.flavicans larvae were C.hirundinella during this period. The present study indicates that the large-sized cells or colonies of phytoplankton are not only inedible by most cladocerans, but the selective effect of the blooming of these algae can also influence the composition and dominance of the zooplankton community, especially for the filter-feeding Cladocera, in a similar way as the selective predation by planktivorous fish. The large-sized phytoplankton can also be an important alternative food for ominivorous invertebrate predators such as Chaoborus larvae, and thus may affect the interactions between these predators and their zooplanktonic prey. In this way, such phytoplankton may play a very important role in regulating the dynamics of the aquatic food web, and become a driving force in shaping the community structure of zooplankton.
Resumo:
The effect of potassium dichromate in concentrations of 0.5 to 10 mg/l on a laboratory culture of Sc. quadricauda algae was studied in standard conditions. The total cell numbers decreased at potassium dichromate concentrations over 1 mg/l, and the proportion of living cells decreased at all studied concentrations. A positive correlation was found between changes in cell size and their numbers at toxin concentrations of 1 and 3 mg/l, and a negative correlation was found between the relative size and the cell numbers at 3 and 10 mg/l. This may be due to different intensity of growth inhibition and cell division under the influence of the toxin. The culture sensitivity to the toxin increased in autumn and decreased in the spring.
Resumo:
Since its completion in 1973 the Danjiangkou Dam has markedly changed downstream flows, water levels, temperatures, sediment loads and other water quality characteristics in downstream reaches of the Hanjiang River. There have been changes in the growth, spawning behaviour and overwintering condition of local fish populations, in the composition and abundance of food organisms and in the composition of the commercial fish catch. Despite the changed environment and the absence of a fish pass, fish populations are still able to grow and spawn under the new regime. Where conditions are like those of the Hanjiang River, dams may not necessarily have calamitous consequences for fishery production.
Resumo:
A series of diphasic nanocrystalline silicon films and solar cells was prepared using different hydrogen dilution ratios of silane by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD). It was observed that after light soaking the open circuit voltage (V-oc) of the diphasic solar cells increased, while that of amorphous silicon solar cells decreased. Raman scattering spectroscopy was performed on the series of diphasic silicon films before and after light soaking. It was found that after light soaking the nanostruclures in the diphasic nanocrystalline silicon films were changed. Both the grain sizes and grain volume fraction reduced, while the grain boundary components increased. These results provide experimental evidence for the conjecture that the light-induced increase in V-oc of the diphasic nanocrystalline solar cells might be induced by the changes in the nanostructure of the intrinsic layer. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Light and annealing induced changes in Si-H bonds in undoped a-Si:H have been investigated by a differential infrared spectroscopy method. The light-induced changes in Si-H bonds are not monotonic, quite different from the usual Staebler-Wronski effect in electronic properties, and involve more complicated physics. The magnitude of the light-induced changes in Si-H bonds is proportional to the hydrogen content in the film. There may exist more than one microscopic process which determine the light-induced changes in Si-H bonds. Almost the whole a-Si:H network is affected when a-Si:H is subjected to Light-soaking or to annealing. The light-induced changes in Si-H bonds may be an independent light-induced phenomenon or an auxiliary process of the metastable SWE defect creation. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
A series of diphasic nanocrystalline silicon films and solar cells was prepared using different hydrogen dilution ratios of silane by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD). It was observed that after light soaking the open circuit voltage (V-oc) of the diphasic solar cells increased, while that of amorphous silicon solar cells decreased. Raman scattering spectroscopy was performed on the series of diphasic silicon films before and after light soaking. It was found that after light soaking the nanostruclures in the diphasic nanocrystalline silicon films were changed. Both the grain sizes and grain volume fraction reduced, while the grain boundary components increased. These results provide experimental evidence for the conjecture that the light-induced increase in V-oc of the diphasic nanocrystalline solar cells might be induced by the changes in the nanostructure of the intrinsic layer. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fulgides are one kind of organic photochromic compound, which are famous for their thermal irreversibility. In this report, from the difference spectra of the absorption A() of one kind of pyrrylfulgide, the spectral refractive index change n() was calculated by the Kramers-Kronig relation (KKR), and a good correlation of theoretically derived values and the experimental values of the n measured by a modified Michelson interferometer was found. Further, it is demonstrated that it was possible to calculate the spectral dependence of diffraction efficiency from the easily accessible absorption changes. This method will be a useful tool for the characterization and optimization of fulgide films. The results show that the diffraction efficiency is high at 488 and 750 nm, where the absorption is very small, so we can realize non-destructive reconstruction.