953 resultados para CUBIC SILICON-CARBIDE
Resumo:
"August 1974."
Resumo:
"August 1991."
Resumo:
"July 1992."
Resumo:
Includes index.
Resumo:
Includes indexes.
Resumo:
Includes indexes.
Resumo:
"May 1971."
Resumo:
"May 1971."
Resumo:
"Issued May 1979."
Resumo:
The measured inter-electrode capacitances of silicon-on-sapphire (SOS) MOSFETs are presented and compared with simulation results. It is shown that the variations of capacitances with DC bias differ from those of bulk MOSFETs due to change in body potential variation of the SOS device resulting from electron-hole pair generation through impact ionisation.
Resumo:
It is generally accepted that growth of eutectic silicon in aluminium-silicon alloys occurs by a twin plane re-entrant edge (TPRE) mechanism. It has been proposed that modification of eutectic silicon by trace additions occurs due to a massive increase in the twin density caused by atomic effects at the growth interface. In this study, eutectic microstructures and silicon twin densities in samples modified by elemental additions of barium (Ba), calcium (Ca), yttrium (Y) and ytterbium (Yb) (elements chosen due to a near-ideal atomic radii for twinning) in an A356.0 alloy have been determined by optical microscopy, thermal analysis, X-ray diffractometry (XRD) and transmission electron microscopy (TEM). Addition of barium or calcium caused the silicon structure to transform to a fine fibrous morphology, while the addition of yttrium or ytterbium resulted in a refined plate-like eutectic structure. Twin densities in all modified samples are higher than in unmodified alloys, and there are no significant differences between fine fibrous modification (by Ba and Ca) and refined plate-like modification (by Y and Yb). The twin density in all modified samples is less than expected based on the predictions by the impurity induced twining model. Based on these results it is difficult to explain the modification with Ba, Ca, Y and Yb by altered twin densities alone.
Resumo:
We review progress at the Australian Centre for Quantum Computer Technology towards the fabrication and demonstration of spin qubits and charge qubits based on phosphorus donor atoms embedded in intrinsic silicon. Fabrication is being pursued via two complementary pathways: a 'top-down' approach for near-term production of few-qubit demonstration devices and a 'bottom-up' approach for large-scale qubit arrays with sub-nanometre precision. The 'top-down' approach employs a low-energy (keV) ion beam to implant the phosphorus atoms. Single-atom control during implantation is achieved by monitoring on-chip detector electrodes, integrated within the device structure. In contrast, the 'bottom-up' approach uses scanning tunnelling microscope lithography and epitaxial silicon overgrowth to construct devices at an atomic scale. In both cases, surface electrodes control the qubit using voltage pulses, and dual single-electron transistors operating near the quantum limit provide fast read-out with spurious-signal rejection.
Resumo:
Denote the set of 21 non-isomorphic cubic graphs of order 10 by L. We first determine precisely which L is an element of L occur as the leave of a partial Steiner triple system, thus settling the existence problem for partial Steiner triple systems of order 10 with cubic leaves. Then we settle the embedding problem for partial Steiner triple systems with leaves L is an element of L. This second result is obtained as a corollary of a more general result which gives, for each integer v greater than or equal to 10 and each L is an element of L, necessary and sufficient conditions for the existence of a partial Steiner triple system of order v with leave consisting of the complement of L and v - 10 isolated vertices. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Different amorphous structures have been induced in monocrystalline silicon by high pressure in indentation and polishing. Through the use of high-resolution transmission electron microscopy and nanodiffraction, it was found that the structures of amorphous silicon formed at slow and fast loading/unloading rates are dissimilar and inherit the nearest-neighbor distance of the crystal in which they are formed. The results are in good agreement with recent theoretical predictions. (C) 2004 American Institute of Physics.