999 resultados para Adamussium colbecki, d13C
Resumo:
ODP Hole 801C penetrates >400 m into 170-Ma oceanic basement formed at a fast-spreading ridge. Most basalts are slightly (10-20%) recrystallized to saponite, calcite, minor celadonite and iron oxyhydroxides, and trace pyrite. Temperatures estimated from oxygen isotope data for secondary minerals are 5-100°C, increasing downward. At the earliest stage, dark celadonitic alteration halos formed along fractures and celadonite, and quartz and chalcedony formed in veins from low-temperature (<100°C) hydrothermal fluids. Iron oxyhydroxides subsequently formed in alteration halos along fractures where seawater circulated, and saponite and pyrite developed in the host rock and in zones of restricted seawater flow under more reducing conditions. Chemical changes include variably elevated K, Rb, Cs, and H2O; local increases in FeT, Ba, Th, and U; and local losses of Mg and Ni. Secondary carbonate veins have 87Sr/86Sr = 0.706337 - 0.707046, and a negative correlation with d18O results from seawater-basalt interaction. Carbonates could have formed at any time since the formation of Site 801 crust. Variable d13C values (-11.2? to 2.9?) reflect the incorporation of oxidized organic carbon from intercalated sediments and changes in the d13C of seawater over time. Compared to other oceanic basements, a major difference at Site 801 is the presence of two hydrothermal silica-iron deposits that formed from low-temperature hydrothermal fluids at the spreading axis. Basalts associated with these horizons are intensely altered (60-100%) to phyllosilicates, calcite, K-feldspar, and titanite; and exhibit large increases in K, Rb, Cs, Ba, H2O, and CO2, and losses of FeT, Mn, Mg, Ca, Na, and Sr. These effects may be common in crust formed at fast-spreading rates, but are not ubiquitous. A second important difference is that the abundance of brown oxidation halos along fractures at Site 801 is an order of magnitude less than at some other sites (2% vs. 20-30%). Relatively smooth basement topography (<100 m) and high sedimentation rate (8 m/Ma) probably restricted the access of oxygenated seawater. Basement lithostratigraphy and early low-temperature hydrothermal alteration and mineral precipitation in fractures at the spreading axis controlled permeability and limited later flow of oxygenated seawater to restricted depth intervals.
Resumo:
Oxygen and carbon stable isotope data of Pyrgo murrhina and flux rates of calcium carbonate in the bio- and magnetostratigraphically dated sediment sequence at DSDP Site 141 were used for a reconstruction of the deep-water circulation in the Northeast Atlantic during Late Miocene and Pliocene times. A distinct change towards reduced advection of deep water recorded near 5.4 Ma is contemporaneous with the cessation of the outflow of the saline Mediterranean water into the Atlantic. During the Pliocene, between 4.5 and 2.75 Ma and between 2.1 and 1.8 Ma, North Atlantic Deep Water (NADW) circulation was sluggish and Site 141 possibly influenced by Antarctic Bottom Water (AABW). Near 2.75 Ma, the advection of well-oxidized NADW was strongly intensified. This change is related to an onset of major Arctic ice growth and/or a major cooling of NADW.
Resumo:
Stable isotope data on benthic foraminifera from more than 30 cores on the northern Emperor Seamounts and in the Okhotsk Sea are synthesized in paleohydrographic profiles spanning the depth range 1000-4000 m. Holocene (core-top) benthic foraminiferal d18O and d13C data are calibrated to modern hydrographic properties through measurements of d13C of SumCO2 and d18O of seawater. Cibicidoides stable isotope ratios are close to the d13C and equilibrium d18O of seawater, whereas Uvigerina d18O and d13C are variably offset from Cibicidoides. Glacial maximum d13C of Cibicidoides displays a different vertical profile than that of the Holocene. When results are adjusted by +0.32 per mil to account for the secular change in d13C during the last glacial maximum, the data coincide with the modern seawater and foraminiferal curves deeper than ~2 km. However, at shallower depths d13C gradually increases by as much as 1 per mil above the modern value. Furthermore, above 2 km the benthic d18O decreases by ~0.5 per mil. These results are consistent with a benthic front at ~2 km in the North Pacific (see Herguera et al., 1992), but they differ from interpretations based on trace metal data which indicate a source of nutrient-depleted deep water during glaciation. The isotopic data suggest that during glaciation there was a better ventilated watermass at intermediate depths in the far northwestern Pacific, it was relatively fresher than deep waters there, and deep waters were as nutrient-rich as today.
Resumo:
We investigated surface and deep ocean variability in the subpolar North Atlantic from 1000 to 500 thousand years ago (ka) based on two Ocean Drilling Program (ODP) sites, Feni drift site 980 (55°29'N, 14°42'W) and Bjorn drift site 984 (61°25'N, 24°04'W). Benthic foraminiferal stable isotope data, planktic foraminiferal faunas, ice-rafted debris data, and faunally based sea-surface temperature estimates help test the hypothesis that oceanographic changes in the North Atlantic region were associated with the onset of the 100-kyr world during the mid-Pleistocene revolution. Based on percentage of Neogloboquadrina pachyderma (s) records from both sites, surface waters during interglacials and glacials were cooler in the mid-Pleistocene than during marine isotope stages (MIS) 5 and 6. In particular, interglaciations at Bjorn drift site 984 were significantly cooler. Faunal evidence suggests that the interglacial Arctic front shifted from a position between the two sites to a position northwest of Bjorn drift site 984 after ca. 610 ka. As during the late Pleistocene, we find faunal evidence for lagging surface warmth at most of the glacial initiations during the mid-Pleistocene. Each initiation is associated with high benthic d13C values that are maintained into the succeeding glaciation, which we term "lagging NADW production." These findings indicate that lagging warmth and lagging NADW production are robust features of the regional climate system that persist in the middle to late Pleistocene.
Resumo:
Stockwork-like metal sulfide mineralizations were found at 910-928 m below seafloor (BSF) in the pillow/dike transition zone of Hole 504B. This is the same interval where most physical properties of the 5.9-m.y.-old crust of the Costa Rica Rift change from those characteristic of Layer 2B to those of Layer 2C. The pillow lavas, breccias, and veins of the stockwork-like zone were studied by transmitted and reflected light microscopy, X-ray diffraction, and electron microprobe analysis. Bulk rock oxygen isotopic analyses as well as isolated mineral oxygen and sulfur isotopic analyses and fluid inclusion measurements were carried out. A complex alteration history was reconstructed that includes three generations of fissures, each followed by precipitation of characteristic hydrothermal mineral parageneses: (1) Minor and local deposition of quartz occurred on fissure walls; adjacent wall rocks were silicified, followed by formation of chlorite and minor pyrite I in the veins, whereas albite, sphene, chlorite and chlorite-expandable clay mixtures, actinolite, and pyrite replaced igneous phases in the host rocks. The hydrothermal fluids responsible for this first stage were probably partially reacted seawater, and their temperatures were at least 200-250° C. (2) Fissures filled during the first stage were reopened and new cracks formed. They were filled with quartz, minor chlorite and chlorite-expandable clay mixtures, traces of epidote, common pyrite, sphalerite, chalcopyrite, and minor galena. During the second stage, hydrothermal fluids were relatively evolved metal- and Si-rich solutions whose temperatures ranged from 230 to 340° C. The fluctuating chemical composition and temperature of the solutions produced a complex depositional sequence of sulfides in the veins: chalcopyrite I, ± Fe-rich sphalerite, chalcopyrite II ("disease"), Fe-poor sphalerite, chalcopyrite III, galena, and pyrite II. (3) During the last stage, zeolites and Mg-poor calcite filled up the remaining spaces and newly formed cracks and replaced the host rock plagioclase. Analcite and stilbite were first to form in veins, possibly at temperatures below 200°C; analcite and earlier quartz were replaced by laumontite at 250°C, whereas calcite formation temperature ranged from 135 to 220°C. The last stage hydrothermal fluids were depleted in Mg and enriched in Ca and 18O compared to seawater and contained a mantle carbon component. This complex alteration history paralleling a complex mineral paragenesis can be interpreted as the result of a relatively long-term evolution of a hydrothermal system with superimposed shorter term fluctuations in solution temperature and composition. Hydrothermal activity probably began close to the axis of the Costa Rica Rift with the overall cooling of the system and multiple fracturing stages due to movement of the crust away from the axis and/or cooling of a magmatic heat source.
Resumo:
Gas hydrates represent one of the largest pools of readily exchangeable carbon on Earth's surface. Releases of the greenhouse gas methane from hydrates are proposed to be responsible for climate change at numerous events in geological history. Many of these inferred events, however, were based on carbonate carbon isotopes which are susceptible to diagenetic alterations. Here we propose a molecular fossil proxy, i.e., the "Methane Index (MI)", to detect and document the destabilization and dissociation of marine gas hydrates. MI consists of the relative distribution of glycerol dibiphytanyl glycerol tetraethers (GDGTs), the core membrane lipids of archaea. The rational behind MI is that in hydrate-impacted environments, the pool of archaeal tetraether lipids is dominated by GDGT-1, -2 and -3 due to the large contribution of signals from the methanotrophic archaeal community. Our study in the Gulf of Mexico cold-seep sediments demonstrates a correlation between MI and the compound-specific carbon isotope of GDGTs, which is strong evidence supporting the MI-methane consumption relationship. Preliminary applications of MI in a number of hydrate-impacted and/or methane-rich environments show diagnostic MI values, corroborating the idea that MI may serve as a robust indicator for hydrate dissociation that is useful for studies of global carbon cycling and paleoclimate change.
Resumo:
Vesicomyidae clams harbor sulfide-oxidizing endosymbionts and are typical members of cold seep communities associated with tectonic faults where active venting of fluids and gases takes place. We investigated the central biogeochemical processes that supported a vesicomyid clam colony as part of a locally restricted seep community in the Japan Trench at 5346 m water depth, one of the deepest seep settings studied to date. An integrated approach of biogeochemical and molecular ecological techniques was used combining in situ and ex situ measurements. During the cruise YK06-05 in 2006 with the RV Yokosuka to the Japan Trench, we investigated a clam colony inhabited by Abyssogena phaseoliformis (former known as Calyptogena phaseoliformis) and Isorropodon fossajaponicum (former known as Calyptogena fossajaponica). The targeted sampling and precise positioning of the in situ instruments were achieved with the manned research submersible Shinkai 6500 (JAMSTEC, Nankoku, Kochi, Japan). Sampling was first performed close to the rim of the JTC colony and then at the center. Immediately after sample recovery onboard, the sediment core was sub-sampled for ex situ rate measurements or preserved for later analyses. In sediment of the clam colony, low sulfate reduction (SR) rates (max. 128 nmol ml**-1 d**-1) were coupled to the anaerobic oxidation of methane (AOM). They were observed over a depth range of 15 cm, caused by active transport of sulfate due to bioturbation of the vesicomyid clams. A distinct separation between the seep and the surrounding seafloor was shown by steep horizontal geochemical gradients and pronounced microbial community shifts. The sediment below the clam colony was dominated by anaerobic methanotrophic archaea (ANME-2c) and sulfate-reducing Desulfobulbaceae (SEEP-SRB-3, SEEP-SRB-4). Aerobic methanotrophic bacteria were not detected in the sediment and the oxidation of sulfide seemed to be carried out chemolithoautotrophically by Sulfurovum species. Thus, major redox processes were mediated by distinct subgroups of seep-related microorganisms that might have been selected by this specific abyssal seep environment. Fluid flow and microbial activity was low but sufficient to support the clam community over decades and to build up high biomasses. Hence, the clams and their microbial communities adapted successfully to a low-energy regime and may represent widespread chemosynthetic communities in the Japan Trench.
Resumo:
The article shows that pollen analysis plays an important role in the prediction of potential settlement areas and, furthermore, can offer a crude determination of settlement duration. Especially when the archaeological data fails to offer a possibility of dating, pollen analysis in connection with 14C can importantly broaden the knowledge base. As in the present case, the results of the Archaeo-Prognosis mapping and the pollen analysis of the Gabelsee are compared and, within this vicinity, confirmend. = Der Beitrag zeigt, dass die Pollenanalyse eine wichtige Rolle für die Vorhersage von potenziellen Siedlungsflächen spielen und darüber hinaus eine grobe Berechnung der Siedlungsdauer bieten kann. Insbesondere wenn die archäologische Datenbasis keine genaue Datierung zulässt, ermöglicht die Pollenanalyse in Verbindung mit der 14C-Datierung eine wichtige Erweiterung der Kenntnisse. Im vorliegenden Fall konnten die Ergebnisse der Archäoprognosekarte mit denjenigen der Pollenanalyse des Gabelsees verglichen und für diesen lokalen Raum bestätigt werden.
Resumo:
The CaCO3 content in Quaternary deep-sea sediments from Pacific and Atlantic oceans have been suggested to respond differently to glacial/interglacial cycles; CaCO3 contents are highest during glacials in the Pacific but highest during interglacials in the Atlantic Ocean. It is not yet clear as to whether a Pacific or an Atlantic pattern of CaCO3 fluctuations dominates the Indian Ocean. We have analyzed the Ocean Drilling Program (ODP) Site 709A from the western equatorial Indian Ocean for the last 1370 ka to determine the relationships between percentages and fluxes of CaCO3 and Quaternary paleoclimatic changes. We also analyzed the coarse (>25 µm) and fine (<25 µm) fractions of CaCO3 in an attempt at estimating the influence of differences in productivity of foraminifera and calcareous nannofossils in shaping the CaCO3 record. Carbon isotopes and Ba/Al ratios were used as indices of productivity. Percentages and fluxes of CaCO3 in the total sediment and <25 µm fraction do not show any clear relationships to glacial/interglacial cycles derived from d18O of the planktonic foraminifera Globigerinoides ruber. This indicates that CaCO3 fluctuations at this site do not show either a Pacific or an Atlantic pattern of CaCO3 fluctuations. Fluxes of CaCO3 (0.38 to 2.46 g/cm**2/ ka) in total sediment and Ba/Al ratios (0.58 to 3.93 g/cm**2/ka) show six-fold variability through the last 1370 ka, which points out that productivity changes are significant at this site. Fluxes of the fine CaCO3 component demonstrate a 26-fold change (0.02 to 0.52 g/cm**2/ka), whereas the coarse CaCO3 component exhibit eight-fold change (0.13 to 1.07 g/cm**2/ka). This suggests that productivity variations of calcareous nannofossils are greater in comparison with the foraminifera. On the other hand, mean values of coarse CaCO3 fluxes are higher compared to those of fine CaCO3, which reveals that the foraminifera contribute more to the bulk CaCO3 flux than the calcareous nannofossils in the equatorial Indian Ocean.
Resumo:
Radiocarbon dating was carried out on the total organic carbon of 19 lacustrine and marine sediment samples from the Bunger Hills. The results indicate that radiocarbon contamination is negligible throughout two sediment sequences from a fresh water lake. In contrast, two sequences from marine basins are irregularly influenced by the Antarctic Marine Reservoir Effect, which today amounts to more than 1000 years, depending on the degree of dilution with meltwater. All sediments were deposited during Holocene time.
Resumo:
Calcareous nannoplankton, palynomorph, benthic foraminifera, and oxygen isotope records from the supraregionally distributed Niveau Paquier (Early Albian age, Oceanic Anoxic Event 1b) and regionally distributed Niveau Kilian (Late Aptian age) black shales in the Vocontian Basin (SE France) exhibit variations that reflect paleoclimatic and paleoceanographic changes in the mid-Cretaceous low latitudes. To quantify surface water productivity and temperature changes, nutrient and temperature indices based on calcareous nannofossils were developed. The nutrient index strongly varies in the precessional band, whereas variations of the temperature index reflect eccentricity. Since polar ice caps were not present during the mid-Cretaceous, these variations probably result from feedback mechanisms within a monsoonal climate system of the mid-Cretaceous low latitudes involving warm/humid and cool/dry cycles. A model is proposed that explains the formation of mid-Cretaceous black shales through monsoonally driven changes in temperature and evaporation/precipitation patterns. The Lower Albian Niveau Paquier, which has a supraregional distribution, formed under extremely warm and humid conditions when monsoonal intensity was strongest. Bottom water ventilation in the Vocontian Basin was diminished, probably due to increased precipitation and reduced evaporation in regions of deep water formation at low latitudes. Surface water productivity in the Vocontian Basin was controlled by the strength of monsoonal winds. The Upper Aptian Niveau Kilian, which has a regional distribution only, formed under a less warm and humid climate than the Niveau Paquier. Low-latitude deep water formation was reduced to a lesser extent and/or on regional scale only. The threshold for the formation of a supraregional black shale was not reached. The intensity of increases in temperature and humidity controlled whether black shales developed on a regional or supraregional scale. At least in the Vocontian Basin, the increased preservation of organic matter at the sea floor was more significant in black shale formation than the role of enhanced productivity.
Resumo:
We determined the d18O and d13C of individual Globigerinoides ruber and Pulleniatina obliquiloculata from sediment traps located from 5°N to 12°S along 140°W in the Pacific Ocean to evaluate the effects of varying [CO3=] on shell d18O and d13C. Variations in the offset between shell d13C and d13CDIC (Dd13Cs-DIC) are attributed to differences in [CO3]2-, temperature, and shell size between sample sites. When Dd13Cs-DIC of G. ruber was corrected for variations in [CO3]2- using the experimental slope of Bijma et al. (1998), the residual Dd13Cs-DIC was correlated with mixed layer temperature (+0.10±0.04 per mil °C**-1). The slope of this temperature effect is consistent with experimental results. In P. obliquiloculata, Dd13Cs-DIC and temperature were strongly anticorrelated (?0.14±0.03 per mil C**-1). We are unable to separate the influences of [CO3]2- and temperature in this species without independent experimental data. Correcting for [CO3]2- variability on d18Os of G. ruber improves the accuracy of estimated sea surface temperatures.
Resumo:
Lower Miocene through upper Pleistocene benthic foraminifer assemblage records from Ocean Drilling Program Site 751 on the Southern Kerguelen Plateau (57°44'S, water depth 1634 m) were combined with benthic and planktonic foraminifer oxygen and carbon isotope records and high-resolution CaCO3 data from the same site. Implications for the Neogene productivity and paleoceanography of the southern Indian Ocean are discussed. We used distinctive features of the Miocene d18O and d13C curves for stratigraphic correlation. Coinciding with a lower middle Miocene hiatus from 14.2 to 13.4 Ma, there was a rapid increase in benthic d18O values by 1.2 per mil. This distinct increase occurs in middle Miocene benthic foraminifer oxygen isotope curves from all oceans. No major change, however, in benthic foraminifer faunal composition occurred in this period of growth of the Antarctic ice cap and cooling of deep ocean waters (14.9-14.2 Ma). A drastic change in benthic foraminifer faunas coincided with a hiatus from 8.4 to 5.9 Ma. Shortly after this hiatus, in the latest Miocene, the CaCO3 content of the sediments dropped from 75% to 0%. From that time ( 5.8 Ma) through the early Pliocene, Site 751 has been situated beneath a high biogenic siliceous productivity zone. Carbonate contents of upper Pliocene and Pleistocene sediments vary between 20% and 70%. The benthic foraminifer faunas in the uppermost Pliocene and lower Pleistocene reflect strong bottom current conditions, in contrast to those in the upper Pleistocene, which indicate calm sedimentation and high food supply. High d13C values of planktonic foraminifers compared with low values of benthic foraminifers suggest high primary productivity in the late Pleistocene. The changes in productivity were probably a result of latitudinal migration and meandering of the Polar Frontal Zone.