995 resultados para Áudio digital
Resumo:
An electro-optically (EO) modulated oxide-confined vertical-cavity surface-emitting laser (VCSEL) containing a saturable absorber in the VCSEL cavity is studied. The device contains an EO modulator section that is resonant with the VCSEL cavity. A type-II EO superlattice medium is employed in the modulator section and shown to result in a strong negative EO effect in weak electric fields. Applying the reverse bias voltages to the EO section allows triggering of short pulses in the device. Digital data transmission (return-to-zero pseudo-random bit sequence, 27-1) at 10Gb/s at bit-error-rates well below 10-9 is demonstrated. © 2014 AIP Publishing LLC.
Resumo:
We demonstrate the tunability of a silicon nitride micro-resonator using the concept of Digital Microfluidics. Our system allows driving micro-droplets on-chip, enabling the control of the effective refractive index at the vicinity of the resonator. © 2010 OSA/FiO/LS 2010.
Resumo:
Geographical Information Systems (GIS) and Digital Elevation Models (DEM) can be used to perform many geospatial and hydrological modelling including drainage and watershed delineation, flood prediction and physical development studies of urban and rural settlements. This paper explores the use of contour data and planimetric features extracted from topographic maps to derive digital elevation models (DEMs) for watershed delineation and flood impact analysis (for emergency preparedness) of part of Accra, Ghana in a GIS environment. In the study two categories of DEMs were developed with 5 m contour and planimetric topographic data; bare earth DEM and built environment DEM. These derived DEMs were used as terrain inputs for performing spatial analysis and obtaining derivative products. The generated DEMs were used to delineate drainage patterns and watershed of the study area using ArcGIS desktop and its ArcHydro extension tool from Environmental Systems Research Institute (ESRI). A vector-based approach was used to derive inundation areas at various flood levels. The DEM of built-up areas was used as inputs for determining properties which will be inundated in a flood event and subsequently generating flood inundation maps. The resulting inundation maps show that about 80% areas which have perennially experienced extensive flooding in the city falls within the predicted flood extent. This approach can therefore provide a simplified means of predicting the extent of inundation during flood events for emergency action especially in less developed economies where sophisticated technologies and expertise are hard to come by. © Springer Science + Business Media B.V. 2009.
Resumo:
An 80 GSPS photonic ADC system is demonstrated, using broadband MLL and dispersive fibre to form a continuous waveform with time-wavelength mapping, and AWG to channelise. Tests are carried out for RF signals up to 10GHz. © 2005 Optical Society of America.
Resumo:
A detailed study on analyzing the crosstalk in a wavelength division multiplexed fiber laser sensor array system based on a digital phase generated carrier interferometric interrogation scheme is reported. The crosstalk effects induced by the limited optical channel isolation of a dense wavelength division demultiplexer (DWDM) are presented, and the necessary channel isolation to keep the crosstalk negligible to the output signal was calculated via Bessel function expansion and demonstrated by a two serial fiber laser sensors system. Finally, a three-element fiber laser sensor array system with a 50-dB channel-isolation DWDM was built up. Experimental results demonstrated that there was no measurable crosstalk between the output channels.
Resumo:
This paper proposes two kinds of novel single-electron analog-digital conversion (ADC) and digital-analog conversion (DAC) circuits that consist of single-electron transistors (SETs) and metal-oxide-semiconductor (MOS) transistors. The SET/MOS hybrid ADC and DAC circuits possess the merits of the SET circuit and the MOS circuit. We obtain the SPICE macro-modeling code of the SET transistor by studying and fitting the characteristics of the SET with SPICE simulation and Monte Carlo simulation methods. The SPICE macro-modeling code is used for the simulation of the SET/MOS hybrid ADC and DAC circuits. We simulate the performances of the SET/MOS hybrid 3-b ADC and 2-b DAC circuits by using the H-SPICE simulator. The simulation results demonstrate that the hybrid circuits can perform analog-digital and digital-analog data conversion well at room temperature. The hybrid ADC and DAC circuits have advantages as-follows: 1) compared with conventional circuits, the architectures of the circuits are simpler; 2) compared with single electron transistor circuits, the circuits have much larger load capability; 3) the power dissipation of the circuits are lower than uW; 4) the data conversion rate of the circuits can exceed 100 MHz; and 5) the resolution of the ADC and DAC circuits can be increased by the pipeline architectures.
Resumo:
This paper presents a direct digital frequency synthesizer (DDFS) with a 16-bit accumulator, a fourth-order phase domain single-stage Delta Sigma interpolator, and a 300-MS/s 12-bit current-steering DAC based on the Q(2) Random Walk switching scheme. The Delta Sigma interpolator is used to reduce the phase truncation error and the ROM size. The implemented fourth-order single-stage Delta Sigma noise shaper reduces the effective phase bits by four and reduces the ROM size by 16 times. The DDFS prototype is fabricated in a 0.35-mu m CMOS technology with active area of 1.11 mm(2) including a 12-bit DAC. The measured DDFS spurious-free dynamic range (SFDR) is greater than 78 dB using a reduced ROM with 8-bit phase, 12-bit amplitude resolution and a size of 0.09 mm(2). The total power consumption of the DDFS is 200)mW with a 3.3-V power supply.
Resumo:
A compact direct digital frequency synthesizer (DDFS) for system-on-chip (SoC) is developed in this paper. For smaller chip size and lower power consumption, the phase to sine mapping data is compressed by using sine symmetry technique, sine-phase difference technique, quad line approximation (QLA) technique and quantization and error read only memory (QE-ROM) technique. The ROM size is reduced by 98 % using the techniques mentioned above. A compact DDFS chip with 32-bit phase storage depth and a 10-bit on-chip digital to analog converter(DAC) has been successfully implemented using standard 0.35um CMOS process. The core area of the DDFS is 1.6mm(2). It consumes 167 mW at 3.3V, and its spurious free dynamic range (SFDR) is 61dB.
Resumo:
A novel low-power digital baseband circuit for UHF RFID tag with sensors is presented in this paper. It proposes a novel baseband architecture and a new operating scheme to fulfill the sensor functions and to reduce power consumption. It is also compatible with the EPC C1G2 UHF RFID protocol. It adopts some advanced low power techniques for system design and circuit design: adaptive clock-gating, multi-clock domain and asynchronous circuit. The baseband circuit is implemented in 0.18um 1P3M standard CMOS process. ne chip area is 0.28 mm(2) excluding test pads. Its power consumption is 25uW under 1.1V power supply.
Resumo:
This paper presents a direct digital frequency synthesizer (DDFS) with a 16-bit accumulator, a 4th-order single-stage pipelined delta-sigma interpolator and a 300MS/s 12-bit current-steering DAC based on Q(2) Random Walk switching scheme. The delta-sigma interpolator is used to reduce the phase truncation error and the ROM size. The measured spurious-free dynamic range (SFDR) is greater than 80 dB for 8-bit phase value and 12-bit sine-amplitude output. The DDFS prototype is fabricated in a 0.35um CMOS technology with core area of 1.11mm(2).
Resumo:
This paper presents a direct digital frequency synthesizer (DDFS) with a 16-bit accumulator, a fourth-order phase domain single-stage Delta Sigma interpolator, and a 300-MS/s 12-bit current-steering DAC based on the Q(2) Random Walk switching scheme. The Delta Sigma interpolator is used to reduce the phase truncation error and the ROM size. The implemented fourth-order single-stage Delta Sigma noise shaper reduces the effective phase bits by four and reduces the ROM size by 16 times. The DDFS prototype is fabricated in a 0.35-mu m CMOS technology with active area of 1.11 mm(2) including a 12-bit DAC. The measured DDFS spurious-free dynamic range (SFDR) is greater than 78 dB using a reduced ROM with 8-bit phase, 12-bit amplitude resolution and a size of 0.09 mm(2). The total power consumption of the DDFS is 200)mW with a 3.3-V power supply.
Resumo:
This paper presents a high speed ROM-less direct digital frequency synthesizer (DDFS) which has a phase resolution of 32 bits and a magnitude resolution of 10 bits. A 10-bit nonlinear segmented DAC is used in place of the ROM look-up table for phase-to-sine amplitude conversion and the linear DAC in a conventional DDFS.The design procedure for implementing the nonlinear DAC is presented. To ensure high speed, current mode logic (CML) is used. The chip is implemented in Chartered 0.35μm COMS technology with active area of 2.0 × 2.5 mm~2 and total power consumption of 400 mW at a single 3.3 V supply voltage. The maximum operating frequency is 850 MHz at room temperature and 1.0 GHz at 0 ℃.
Resumo:
A compact direct digital frequency synthesizer (DDFS) for system-on-chip implementation of the high precision rubidium atomic frequency standard is developed. For small chip size and low power consumption, the phase to sine mapping data is compressed using sine symmetry technique, sine-phase difference technique, quad line approximation technique,and quantization and error read only memory (QE-ROM) technique. The ROM size is reduced by 98% using these techniques. A compact DDFS chip with 32bit phase storage depth and a 10bit on-chip digital to analog converter has been successfully implemented using a standard 0.35μm CMOS process. The core area of the DDFS is 1.6mm^2. It consumes 167mW at 3.3V,and its spurious free dynamic range is 61dB.
Resumo:
A near-infrared single-photon detection system is established by using pigtailed InGaAs/InP avalanche photodiodes. With a 50GHz digital sampling oscilloscope, the function and process of gated-mode (Geiger-mode) single-photon detection are intuitionally demonstrated for the first time. The performance of the detector as a gated-mode single-photon counter at wavelengths of 1310 and 1550nm is investigated. At the operation temperature of 203K,a quantum efficiency of 52% with a dark count probability per gate of 2. 4 * 10~(-3), and a gate pulse repetition rate of 50kHz are obtained at 1550nm. The corresponding parameters are 43% , 8. 5 * 10~(-3), and 200kHz at 238K.