927 resultados para organic photonic materials
Resumo:
The work presented in this thesis tackles some important points concerning the collective properties of two typical categories of molecular crystals, i.e., anthracene derivatives and charge transfer crystals. Anthracene derivatives have constituted the class of materials from which systematical investigations of crystal-to-crystal photodimerization reactions started, developed and have been the subject of a new awakening in the recent years. In this work some of these compounds, namely, 9-cyanoanthacene, 9-anthacenecarboxylic acid and 9-methylanthracene, have been selected as model systems for a phenomenological approach to some key properties of the solid state, investigated by spectroscopic methods. The present results show that, on the basis of the solid state organization and the chemical nature of each compound, photo-reaction dynamics and kinetics display distinctive behaviors, which allows for a classification of the various processes in topochemical, non topochemical, reversible or topophysical. The second part of the thesis was focused on charge transfer crystals, binary systems formed by stoichiometric combinations of the charge donating perylene (D) and the charge accepting tetracyano-quinodimethane (A), this latter also in its fluorinated derivatives. The work was focused on the growth of single crystals, some of which not yet reported in the literature, by PVT technique. Structural and spectroscopic characterizations have been performed, with the aim of determining the degree of charge transfer between donor and acceptor in the co-crystals. An interesting outcome of the systematic search performed in this work is the definition of the experimental conditions which drive the crystal growth of the binary systems either towards the low (1:1) or the high ratio (3:1 or 3:2) stoichiometries.
Resumo:
In dieser Arbeit wurde eine neue Methode zur asymmetrischen Substitution der K-Regionen von Pyren entwickelt, auf welcher das Design und die Synthese von neuartigen, Pyren-basierten funktionalen Materialien beruht. Eine Vielzahl von Substitutionsmustern konnte erfolgreich realisiert werden um die Eigenschaften entsprechend dem Verwendungszweck anzupassen. Der polyzyklische aromatische Kohlenwasserstoff (PAK) Pyren setzt sich aus vier Benzolringen in Form einer planaren Raute mit zwei gegenüberliegenden K-Regionen zusammen. Der synthetische Schlüsselschritt dieser Arbeit ist die chemische Transformation der einen K-Region zu einem α-Diketon und der darauffolgenden selektiven Bromierung der zweiten K-Region. Dieser asymmetrisch funktionalisierte Baustein zeichnet sich durch zwei funktionelle Gruppen mit orthogonaler Reaktivität aus und erweitert dadurch das Arsenal der etablierten Pyren Chemie um eine vielseitig einsetzbare Methode. Aufbauend auf diesem synthetischen Zugang wurden fünf wesentliche Konzepte auf dem Weg zu neuen, von Pyren abgeleiteten Materialen verfolgt: (i) Asymmterische Substitution mit elektronenziehenden versus -schiebenden Gruppen. (ii) Darstellung von Pyrenocyaninen durch Anbindung von Pyren mit einer der K-Regionen an das Phthalocyanin Gerüst zur Ausdehnung des π-Systems. (iii) Einführung von Thiophen an die K-Region um halbleitende Eigenschaften zu erhalten. (iv) Symmetrische Annullierung von PAKs wie Benzodithiophen und Phenanthren an beide K Regionen für cove-reiche und dadurch nicht-planare Strukturen. (v) Verwendung des K-Region-funktionalisierten Pyrens als Synthesebaustein für das Peri-Pentacen. Neben der Synthese wurde die Selbstorganisation in der Festphase und an der flüssig/fest Grenzfläche mittels zweidimensionaler Weitwinkel-Röntgenstreuung (2D WAXS) bzw. Rastertunnelmikroskopie (STM) untersucht. Die halbleitenden Eigenschaften wurden in organischen Feld-Effekt Transistoren (OFETs) charakterisiert.
Resumo:
Ein wesentlicher Anteil an organischem Kohlenstoff, der in der Atmosphäre vorhanden ist, wird als leichtflüchtige organische Verbindungen gefunden. Diese werden überwiegend durch die Biosphäre freigesetzt. Solche biogenen Emissionen haben einen großen Einfluss auf die chemischen und physikalischen Eigenschaften der Atmosphäre, indem sie zur Bildung von bodennahem Ozon und sekundären organischen Aerosolen beitragen. Um die Bildung von bodennahem Ozon und von sekundären organischen Aerosolen besser zu verstehen, ist die technische Fähigkeit zur genauen Messung der Summe dieser flüchtigen organischen Substanzen notwendig. Häufig verwendete Methoden sind nur auf den Nachweis von spezifischen Nicht-Methan-Kohlenwasserstoffverbindungen fokussiert. Die Summe dieser Einzelverbindungen könnte gegebenenfalls aber nur eine Untergrenze an atmosphärischen organischen Kohlenstoffkonzentrationen darstellen, da die verfügbaren Methoden nicht in der Lage sind, alle organischen Verbindungen in der Atmosphäre zu analysieren. Einige Studien sind bekannt, die sich mit der Gesamtkohlenstoffbestimmung von Nicht-Methan-Kohlenwasserstoffverbindung in Luft beschäftigt haben, aber Messungen des gesamten organischen Nicht-Methan-Verbindungsaustauschs zwischen Vegetation und Atmosphäre fehlen. Daher untersuchten wir die Gesamtkohlenstoffbestimmung organische Nicht-Methan-Verbindungen aus biogenen Quellen. Die Bestimmung des organischen Gesamtkohlenstoffs wurde durch Sammeln und Anreichern dieser Verbindungen auf einem festen Adsorptionsmaterial realisiert. Dieser erste Schritt war notwendig, um die stabilen Gase CO, CO2 und CH4 von der organischen Kohlenstofffraktion zu trennen. Die organischen Verbindungen wurden thermisch desorbiert und zu CO2 oxidiert. Das aus der Oxidation entstandene CO2 wurde auf einer weiteren Anreicherungseinheit gesammelt und durch thermische Desorption und anschließende Detektion mit einem Infrarot-Gasanalysator analysiert. Als große Schwierigkeiten identifizierten wir (i) die Abtrennung von CO2 aus der Umgebungsluft von der organischen Kohlenstoffverbindungsfaktion während der Anreicherung sowie (ii) die Widerfindungsraten der verschiedenen Nicht-Methan-Kohlenwasserstoff-verbindungen vom Adsorptionsmaterial, (iii) die Wahl des Katalysators sowie (iiii) auftretende Interferenzen am Detektor des Gesamtkohlenstoffanalysators. Die Wahl eines Pt-Rd Drahts als Katalysator führte zu einem bedeutenden Fortschritt in Bezug auf die korrekte Ermittlung des CO2-Hintergrund-Signals. Dies war notwendig, da CO2 auch in geringen Mengen auf der Adsorptionseinheit während der Anreicherung der leichtflüchtigen organischen Substanzen gesammelt wurde. Katalytische Materialien mit hohen Oberflächen stellten sich als unbrauchbar für diese Anwendung heraus, weil trotz hoher Temperaturen eine CO2-Aufnahme und eine spätere Abgabe durch das Katalysatormaterial beobachtet werden konnte. Die Methode wurde mit verschiedenen leichtflüchtigen organischen Einzelsubstanzen sowie in zwei Pflanzenkammer-Experimenten mit einer Auswahl an VOC-Spezies getestet, die von unterschiedlichen Pflanzen emittiert wurden. Die Pflanzenkammer-messungen wurden durch GC-MS und PTR-MS Messungen begleitet. Außerdem wurden Kalibrationstests mit verschiedenen Einzelsubstanzen aus Permeations-/Diffusionsquellen durchgeführt. Der Gesamtkohlenstoffanalysator konnte den tageszeitlichen Verlauf der Pflanzenemissionen bestätigen. Allerdings konnten Abweichungen für die Mischungsverhältnisse des organischen Gesamtkohlenstoffs von bis zu 50% im Vergleich zu den begleitenden Standardmethoden beobachtet werden.
Resumo:
Organic molecular semiconductors are subject of intense research for their crucial role as key components of new generation low cost, flexible, and large area electronic devices such as displays, thin-film transistors, solar cells, sensors and logic circuits. In particular, small molecular thienoimide (TI) based materials are emerging as novel multifunctional materials combining a good processability together to ambipolar or n-type charge transport and electroluminescence at the solid state, thus enabling the fabrication of integrated devices like organic field effect transistors (OFETs) and light emitting transistor (OLETs). Given this peculiar combination of characteristics, they also constitute the ideal substrates for fundamental studies on the structure-property relationships in multifunctional molecular systems. In this scenario, this thesis work is focused on the synthesis of new thienoimide based materials with tunable optical, packing, morphology, charge transport and electroluminescence properties by following a fine molecular tailoring, thus optimizing their performances in device as well as investigating and enabling new applications. Investigation on their structure-property relationships has been carried out and in particular, the effect of different π-conjugated cores (heterocycles, length) and alkyl end chain (shape, length) changes have been studied, obtaining materials with enhanced electron transport capability end electroluminescence suitable for the realization of OFETs and single layer OLETs. Moreover, control on the polymorphic behaviour characterizing thienoimide materials has been reached by synthetic and post-synthetic methodologies, developing multifunctional materials from a single polymorphic compound. Finally, with the aim of synthesizing highly pure materials, simplifying the purification steps and avoiding organometallic residues, procedures based on direct arylation reactions replacing conventional cross-couplings have been investigated and applied to different classes of molecules, bearing thienoimidic core or ends, as well as thiophene and anthracene derivatives, validating this approach as a clean alternative for the synthesis of several molecular materials.
Resumo:
In this thesis the potential risks associated to the application of biochar in soil as well the stability of biochar were investigated. The study was focused on the potential risks arising from the occurrence of polycyclic aromatic hydrocarbons (PAHs) in biochar. An analytical method was developed for the determination of the 16 USEPA-PAHs in the original biochar and soil containing biochar. The method was successfully validated with a certified reference material for the soil matrix and compared with methods in use in other laboratories during a laboratory exercise within the EU-COST TD1107. The concentration of 16 USEPA-PAHs along with the 15 EU-PAHs, priority hazardous substances in food, was determined in a suite of currently available biochars for agricultural field applications derived from a variety of parent materials and pyrolysis conditions. Biochars analyzed contained the USEPA and some of the EU-PAHs at detectable levels ranging from 1.2 to 19 µg g-1. This method allowed investigating changes in PAH content and distribution in a four years study following biochar addition in soils in a vineyard (CNR-IBIMET). The results showed that biochar addition determined an increase of the amount of PAHs. However, the levels of PAHs in the soil remained within the maximum acceptable concentration for European countries. The vineyard soil performed by CNR-IBIMET was exploited to study the environmental stability of biochar and its impact on soil organic carbon. The stability of biochar was investigated by analytical pyrolysis (Py-GC-MS) and pyrolysis in the presence of hydrogen (HyPy). The findings showed that biochar amendment significantly influence soil stable carbon fraction concentration during the incubation period. Moreover, HyPy and Py-GC-MS were applied to biochars deriving from three different feedstock at two different pyrolysis temperatures. The results evidenced the influence of feedstock type and pyrolysis conditions on the degree of carbonisation.
Resumo:
In this thesis cholesteric films made of liquid crystalline cellulose derivatives with improved optical properties were prepared. The choice of the solvent, hydrogen bond influencing additives, the synthetic realization of a very high degree of substitution on the cellulosic polymer and the use of mechanical stirring at the upper concentration limit of the liquid crystalline range were the basis for an improved alignment of the applied cellulose tricarbamates. In combination with a tuned substrate treatment and film preparation method, cholesteric films were obtained, with optical properties that were theoretically predicted and only known from low molecular weight liquid crystals so far. Subsequent polymerization allowed a permanent fixing of the alignment and the fabrication of free standing and insensitive films.rnThe incorporation of inorganic nanorods into the cholesteric host material was mediated with tailored block copolymers, available via controlled radical polymerization methods. In addition to the shape match between the rodlike mesogens of the host and the nanorods it was possible to increase the miscibility of both materials. Nevertheless, the size of the nanorods, in comparison to the mesogens, in these densely packed liquid crystalline phases as well as their long equilibration times were the reasons for phase separation. Nanorods are, in principle, valuable substitutes for organics, but their utilization in cellulosic CLC was not to be combined with a high quality alignment of the cholesteric structure.rnA swelling process of polymerized films in a dye solution or dissolving dyes in non-polymerized CLC was used for incorporation of the organic chromophores. With the first method the CLC could be aligned and polymerized without any disturbance due to dye molecules. The optical properties of dye and CLC were matched, with regard to mirrorless lasing devices. The dye was optically excited and laser emission supported by the cholesteric cavity was obtained. The polarization and wavelength of the emitted radiation as well as its bandwidth, the obtained interference pattern and threshold behavior of the emission proofed the feedback mechanism that was not believed to be realizable in liquid crystalline polymers. rnUtilization of a microfluidic co-flow injection device enabled us to transfer the properties of cellulosic CLC from the planar film shape to spherical micrometer sized particles. The pure material yielded particles with distorted mesogen alignment similar to films prepared by capillary flow. Dilution of the CLC with a solvent that migrated into the carrier phase during particle preparation provided the basis for particles with well ordered areas. rnAlthough cellulose derivatives were known for their liquid crystalline behavior for decades and synthesized in mass production, their application as feedback material was affected by bad optical properties. In comparison to low molar mass compounds, the low degree of order in the CLC phase was the cause. With the improved material, defined lasing emission was shown and characterized. Derivatives of cellulose are desirable materials, because, as a renewable resource, they are available in large amounts for a low price and need only simple derivatization reactions. The fabrication of CLC films with tunable lasing emission, for which this thesis can provide a starting point, is in good agreement with today's requirements of modern technology and its miniaturization.rn
Resumo:
Organic electronics is an emerging field with a vast number of applications having high potential for commercial success. Although an enormous progress has been made in this research area, many organic electronic applications such as organic opto-electronic devices, organic field effect transistors and organic bioelectronic devices still require further optimization to fulfill the requirements for successful commercialization. The main bottle neck that hinders large scale production of these devices is their performances and stability. The performance of the organic devices largely depends on the charge transport processes occurring at the interfaces of various material that it is composed of. As a result, the key ingredient needed for a successful improvement in the performance and stability of organic electronic devices is an in-depth knowledge of the interfacial interactions and the charge transport phenomena taking place at different interfaces. The aim of this thesis is to address the role of the various interfaces between different material in determining the charge transport properties of organic devices. In this framework, I chose an Organic Field Effect Transistor (OFET) as a model system to carry out this study as it An OFET offers various interfaces that can be investigated as it is made up of stacked layers of various material. In order to probe the intrinsic properties that governs the charge transport, we have to be able to carry out thorough investigation of the interactions taking place down at the accumulation layer thickness. However, since organic materials are highly instable in ambient conditions, it becomes quite impossible to investigate the intrinsic properties of the material without the influence of extrinsic factors like air, moisture and light. For this reason, I have employed a technique called the in situ real-time electrical characterization technique which enables electrical characterization of the OFET during the growth of the semiconductor.
Resumo:
In this thesis mainly two alternating indenofluorene-phenanthrene copolymers were investigated with a variety of spectroscopic and optoelectronic experiments. The different experimental techniques allowed to retrieve deeper insights into their unique optical as well as optoelectronic properties. The motivation of the research presented in this work was to correlate their photophysical properties with respect to their application in electrically pumped lasing. This thesis begins with the description of optical properties studied by classical absorption and emission spectroscopy and successively describes an overall picture regarding their excited state dynamics occurring after photoexcitation studied by time-resolved spectroscopy. The different spectroscopic methods do not only allow to elucidate the different optical transitions occurring in this class of materials, but also contribute to a better understanding of exciton dynamics and exciton interaction with respect to the molecular structure as well as aggregation and photooxidation of the polymers. Furthermore, the stimulated emission properties were analyzed by amplified spontaneous emission (ASE) experiments. Especially one of the investigated materials, called BLUE-1, showed outstanding optical properties including a high optical gain, a low threshold for ASE and low optical losses. Apart from the optical experiments, the charge carrier mobility was measured with the time-of-flight technique and a comparably high hole mobility on the order of 1 x 10-² cm²/(Vs) was determined for BLUE-1 which makes this material promising for organic lasing. The impact of the high charge carrier mobility in this material class was further analyzed in different optoelectronic devices such as organic LEDs (OLEDs) and organic solar cells.
Resumo:
The research project object of this thesis is focused on the development of an advanced analytical system based on the combination of an improved thin layer chromatography (TLC) plate coupled with infrared (FTIR) and Raman microscopies for the detection of synthetic dyes. Indeed, the characterization of organic colorants, which are commonly present in mixtures with other components and in a very limited amount, still represents a challenging task in scientific analyses of cultural heritage materials. The approach provides selective spectral fingerprints for each compound, foreseeing the complementary information obtained by micro ATR-RAIRS-FTIR and SERS-Raman analyses, which can be performed on the same separated spot. In particular, silver iodide (AgI) applied on a gold coated slide is proposed as an efficient stationary phase for the discrimination of complex analyte mixtures, such as dyes present in samples of art-historical interest. The gold-AgI-TLC plate shows high performances related both to the chromatographic separation of analytes and to the spectroscopic detection of components. The use of a mid-IR transparent inorganic salt as the stationary phase avoids interferences of the background absorption in FTIR investigations. Moreover, by ATR microscopy measurements performed on the gold-AgI surface, a considerable enhancement in the intensity of spectra is observed. Complementary information can be obtained by Raman analyses, foreseeing a SERS activity of the AgI substrate. The method has been tested for the characterization of a mixture of three synthetic organic colorants widely used in dyeing processes: Brilliant Green (BG1), Rhodamine B (BV10) and Methylene Blue (BB9).
Resumo:
Die vorliegende Dissertation dient dazu, das Verständnis des Ladungstransportes in organischen Solarzellen zu vertiefen. Mit Hilfe von Computersimulationen wird die Bewegung von Ladungsträgern in organischen Materialien rekonstruiert, und zwar ausgehend von den quantenmechanischen Prozessen auf mikroskopischer Ebene bis hin zur makroskopischen Skala, wo Ladungsträgermobilitäten quantifizierbar werden. Auf Grundlage dieses skalenübergreifenden Ansatzes werden Beziehungen zwischen der chemischen Struktur organischer Moleküle und der makroskopischen Mobilität hergestellt (Struktur-Eigenschafts-Beziehungen), die zu der Optimierung photovoltaischer Wirkungsgrade beitragen. Das Simulationsmodell beinhaltet folgende drei Schlüsselkomponenten. Erstens eine Morphologie, d. h. ein atomistisch aufgelöstes Modell der molekularen Anordnung in dem untersuchten Material. Zweitens ein Hüpfmodell des Ladungstransportes, das Ladungswanderung als eine Abfolge von Ladungstransferreaktionen zwischen einzelnen Molekülen beschreibt. Drittens ein nichtadiabatisches Modell des Ladungstransfers, das Übergangsraten durch drei Parameter ausdrückt: Reorganisationsenergien, Lageenergien und Transferintegrale. Die Ladungstransport-Simulationen richten sich auf die Materialklasse der dicyanovinyl-substituierten Oligothiophene und umfassen Morphologien von Einkristallen, Dünnschichten sowie amorphen/smektischen Mesophasen. Ein allgemeiner Befund ist, dass die molekulare Architektur, bestehend aus einer Akzeptor-Donor-Akzeptor-Sequenz und einem flexiblen Oligomergerüst, eine erhebliche Variation molekularer Dipolmomente und damit der Lageenergien bewirkt. Diese energetische Unordnung ist ungewöhnlich hoch in den Kristallen und umso höher in den Mesophasen. Für die Einkristalle wird beobachtet, dass Kristallstrukturen mit ausgeprägter π-Stapelung und entsprechend großer Transferintegrale zu verhältnismäßig niedrigen Mobilitäten führen. Dieses Verhalten wird zurückgeführt auf die Ausbildung bevorzugter Transportrichtungen, die anfällig für energetische Störungen sind. Für die Dünnschichten bestätigt sich diese Argumentation und liefert ein mikroskopisches Verständnis für experimentelle Mobilitäten. In der Tat korrelieren die Simulationsergebnisse sowohl mit gemessenen Mobilitäten als auch mit photovoltaischen Wirkungsgraden. Für die amorphen/smektischen Systeme steigt die energetische Unordnung mit der Oligomerlänge, sie führt aber auch zu einer unerwarteten Mobilitätsabnahme in dem stärker geordneten smektischen Zustand. Als Ursache dafür erweist sich, dass die smektische Schichtung der räumlichen Korrelation der energetischen Unordnung entgegensteht.
Resumo:
This thesis work has been carried out during the Erasmus exchange period at the “Université Paris 6 – Pierre et Marie Curie”, in the “Edifices PolyMétalliques – EPOM” team, leaded by Prof. Anna Proust, belonging to the “Institut Parisien de Chimie Moléculaire”, under the supervision of Dr. Guillaume Izzet and Dr. Geoffroy Guillemot. The redox properties of functionalized Keggin and Dawson POMs have been exploited in photochemical, catalytic and reactivity tests. For the photochemical purposes, the selected POMs have been functionalized with different photoactive FGs, and the resulting products have been characterized by CV analyses, luminescence tests and UV-Vis analyses. In future, these materials will be tested for hydrogen photoproduction and polymerization of photoactive films. For the catalytic purposes, POMs have been firstly functionalized with silanol moieties, to obtain original coordination sites, and then post-functionalized with TMs such as V, Ti and Zr in their highest oxidation states. In this way, the catalytic properties of TMs were coupled to the redox properties of POM frameworks. The redox behavior of some of these hybrids has been studied by spectro-electrochemical and EPR methods. Catalytic epoxidation tests have been carried out on allylic alcohols and n-olefins, employing different catalysts and variable amounts of them. The performances of POM-V hybrids have been compared to those of VO(iPrO)3. Finally, reactivity of POM-VIII hybrids has been studied, using styrene oxide and ethyl-2-diazoacetate as substrates. All the obtained products have been analyzed via NMR techniques. Cyclovoltammetric analyses have been carried out in order to determine the redox behavior of selected hybrids.
Resumo:
Die Bildung kieselsäurehaltiger Spicula in marinen Schwämmen ist nur möglich durch die enzymatische Aktivität des Silicatein- in Verbindung mit der stöchiometrischen Selbstassemblierung des Enzyms mit anderen Schwammproteinen. Die vorliegende Arbeit basiert auf einem biomimetischen Ansatz mit dem Ziel, unterschiedliche Oberflächen für biotechnologische und biomedizinische Anwendungen mit Biosilica und Biotitania zu beschichten und zu funktionalisieren. Für biotechnologische Anwendungen ist dabei das Drucken von Cystein-getaggtem Silicatein auf Gold-Oberflächen von Bedeutung, denn es ermöglichte die Bildung definierter Biotitania-Strukturen (Anatas), welche als Photokatalysator den Abbau eines organischen Farbstoffs bewirkten. Des Weiteren zeigte sich die bio-inspirierte Modifikation von Tyrosin-Resten an rekombinantem Silicatein-(via Tyrosinase) als vielversprechendes Werkzeug zur Beschleunigung der Selbstassemblierung des Enzyms zu mesoskaligen Filamenten. Durch eine solche Modifikation konnte Silicatein auch auf der Oberfläche von anorganischen Partikeln immobilisiert werden, welches die Assemblierung von anorganisch-organischen Verbundwerkstoffen in wäßriger Umgebung förderte. Die resultierenden supramolekularen Strukturen könnten dabei in bio-inspirierten und biotechnologischen Anwendungen genutzt werden. Weiterhin wurde in der vorliegenden Arbeit die Sekundärstruktur von rekombinantem Silicatein- (Monomer und Oligomer) durch Raman Spektroskopie analysiert, nachdem das Protein gemäß einer neu etablierten Methode rückgefaltet worden war. Diese Spektraldaten zeigten insbesondere Änderungen der Proteinkonformation durch Solubilisierung und Oligomerisierung des Enzyms. Außerdem wurden die osteoinduzierenden und osteogenen Eigenschaften unterschiedlicher organischer Polymere, die herkömmlich als Knochenersatzmaterial genutzt werden, durch Oberflächenmodifikation mit Silicatein/Biosilica verbessert: Die bei der Kultivierung knochenbildender Zellen auf derart oberflächenbehandelten Materialien beobachtete verstärkte Biomineralisierung, Aktivierung der Alkalischen Phosphatase, und Ausbildung eines typischen zellulären Phänotyps verdeutlichen das Potential von Silicatein/Biosilica für der Herstellung neuartiger Implantat- und Knochenersatzmaterialien.
Resumo:
Diese Arbeit widmet sich der Untersuchung der photophysikalischen Prozesse, die in Mischungen von Elektronendonoren mit Elektronenakzeptoren zur Anwendung in organischen Solarzellen auftreten. Als Elektronendonoren werden das Copolymer PBDTTT-C, das aus Benzodithiophen- und Thienothiophene-Einheiten besteht, und das kleine Molekül p-DTS(FBTTh2)2, welches Silizium-überbrücktes Dithiophen, sowie fluoriertes Benzothiadiazol und Dithiophen beinhaltet, verwendet. Als Elektronenakzeptor finden ein planares 3,4:9,10-Perylentetracarbonsäurediimid-(PDI)-Derivat und verschiedene Fullerenderivate Anwendung. PDI-Derivate gelten als vielversprechende Alternativen zu Fullerenen aufgrund der durch chemische Synthese abstimmbaren strukturellen, optischen und elektronischen Eigenschaften. Das gewichtigste Argument für PDI-Derivate ist deren Absorption im sichtbaren Bereich des Sonnenspektrums was den Photostrom verbessern kann. Fulleren-basierte Mischungen übertreffen jedoch für gewöhnlich die Effizienz von Donor-PDI-Mischungen.rnUm den Nachteil der PDI-basierten Mischungen im Vergleich zu den entsprechenden Fulleren-basierten Mischungen zu identifizieren, werden die verschiedenen Donor-Akzeptor-Kombinationen auf ihre optischen, elektronischen und strukturellen Eigenschaften untersucht. Zeitaufgelöste Spektroskopie, vor allem transiente Absorptionsspektroskopie (TA), wird zur Analyse der Ladungsgeneration angewendet und der Vergleich der Donor-PDI Mischfilme mit den Donor-Fulleren Mischfilmen zeigt, dass die Bildung von Ladungstransferzuständen einen der Hauptverlustkanäle darstellt.rnWeiterhin werden Mischungen aus PBDTTT-C und [6,6]-Phenyl-C61-buttersäuremethylesther (PC61BM) mittels TA-Spektroskopie auf einer Zeitskala von ps bis µs untersucht und es kann gezeigt werden, dass der Triplettzustand des Polymers über die nicht-geminale Rekombination freier Ladungen auf einer sub-ns Zeitskala bevölkert wird. Hochentwickelte Methoden zur Datenanalyse, wie multivariate curve resolution (MCR), werden angewendet um überlagernde Datensignale zu trennen. Zusätzlich kann die Regeneration von Ladungsträgern durch Triplett-Triplett-Annihilation auf einer ns-µs Zeitskala gezeigt werden. Darüber hinaus wird der Einfluss des Lösungsmitteladditivs 1,8-Diiodooctan (DIO) auf die Leistungsfähigkeit von p-DTS(FBTTh2)2:PDI Solarzellen untersucht. Die Erkenntnisse von morphologischen und photophysikalischen Experimenten werden kombiniert, um die strukturellen Eigenschaften und die Photophysik mit den relevanten Kenngrößen des Bauteils in Verbindung zu setzen. Zeitaufgelöste Photolumineszenzmessungen (time-resolved photoluminescence, TRPL) zeigen, dass der Einsatz von DIO zu einer geringeren Reduzierung der Photolumineszenz führt, was auf eine größere Phasentrennung zurückgeführt werden kann. Außerdem kann mittels TA Spektroskopie gezeigt werden, dass die Verwendung von DIO zu einer verbesserten Kristallinität der aktiven Schicht führt und die Generation freier Ladungen fördert. Zur genauen Analyse des Signalzerfalls wird ein Modell angewendet, das den gleichzeitigen Zerfall gebundener CT-Zustände und freier Ladungen berücksichtigt und optimierte Donor-Akzeptor-Mischungen zeigen einen größeren Anteil an nicht-geminaler Rekombination freier Ladungsträger.rnIn einer weiteren Fallstudie wird der Einfluss des Fullerenderivats, namentlich IC60BA und PC71BM, auf die Leistungsfähigkeit und Photophysik der Solarzellen untersucht. Eine Kombination aus einer Untersuchung der Struktur des Dünnfilms sowie zeitaufgelöster Spektroskopie ergibt, dass Mischungen, die ICBA als Elektronenakzeptor verwenden, eine schlechtere Trennung von Ladungstransferzuständen zeigen und unter einer stärkeren geminalen Rekombination im Vergleich zu PCBM-basierten Mischungen leiden. Dies kann auf die kleinere Triebkraft zur Ladungstrennung sowie auf die höhere Unordnung der ICBA-basierten Mischungen, die die Ladungstrennung hemmen, zurückgeführt werden. Außerdem wird der Einfluss reiner Fullerendomänen auf die Funktionsfähigkeit organischer Solarzellen, die aus Mischungen des Thienothienophen-basierenden Polymers pBTTT-C14 und PC61BM bestehen, untersucht. Aus diesem Grund wird die Photophysik von Filmen mit einem Donor-Akzeptor-Mischungsverhältnis von 1:1 sowie 1:4 verglichen. Während 1:1-Mischungen lediglich eine co-kristalline Phase, in der Fullerene zwischen den Seitenketten von pBTTT interkalieren, zeigen, resultiert der Überschuss an Fulleren in den 1:4-Proben in der Ausbildung reiner Fullerendomänen zusätzlich zu der co kristallinen Phase. Transiente Absorptionsspektroskopie verdeutlicht, dass Ladungstransferzustände in 1:1-Mischungen hauptsächlich über geminale Rekombination zerfallen, während in 1:4 Mischungen ein beträchtlicher Anteil an Ladungen ihre wechselseitige Coulombanziehung überwinden und freie Ladungsträger bilden kann, die schließlich nicht-geminal rekombinieren.
Resumo:
Organic semiconductor technology has attracted considerable research interest in view of its great promise for large area, lightweight, and flexible electronics applications. Owing to their advantages in processing and unique physical properties, organic semiconductors can bring exciting new opportunities for broad-impact applications requiring large area coverage, mechanical flexibility, low-temperature processing, and low cost. In order to achieve highly flexible device architecture it is crucial to understand on a microscopic scale how mechanical deformation affects the electrical performance of organic thin film devices. Towards this aim, I established in this thesis the experimental technique of Kelvin Probe Force Microscopy (KPFM) as a tool to investigate the morphology and the surface potential of organic semiconducting thin films under mechanical strain. KPFM has been employed to investigate the strain response of two different Organic Thin Film Transistor with active layer made by 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-Pentacene), and Poly(3-hexylthiophene-2,5-diyl) (P3HT). The results show that this technique allows to investigate on a microscopic scale failure of flexible TFT with this kind of materials during bending. I find that the abrupt reduction of TIPS-pentacene device performance at critical bending radii is related to the formation of nano-cracks in the microcrystal morphology, easily identified due to the abrupt variation in surface potential caused by local increase in resistance. Numerical simulation of the bending mechanics of the transistor structure further identifies the mechanical strain exerted on the TIPS-pentacene micro-crystals as the fundamental origin of fracture. Instead for P3HT based transistors no significant reduction in electrical performance is observed during bending. This finding is attributed to the amorphous nature of the polymer giving rise to an elastic response without the occurrence of crack formation.
Resumo:
Polymers that are used in clinical practice as bone-defect-filling materials possess many essential qualities, such as moldability, mechanical strength and biodegradability, but they are neither osteoconductive nor osteoinductive. Osteoconductivity can be conferred by coating the material with a layer of calcium phosphate, which can be rendered osteoinductive by functionalizing it with an osteogenic agent. We wished to ascertain whether the morphological and physicochemical characteristics of unfunctionalized and bovine-serum-albumin (BSA)-functionalized calcium-phosphate coatings were influenced by the surface properties of polymeric carriers. The release kinetics of the protein were also investigated. Two sponge-like materials (Helistat® and Polyactive®) and two fibrous ones (Ethisorb and poly[lactic-co-glycolic acid]) were tested. The coating characteristics were evaluated using state-of-the-art methodologies. The release kinetics of BSA were monitored spectrophotometrically. The characteristics of the amorphous and the crystalline phases of the coatings were not influenced by either the surface chemistry or the surface geometry of the underlying polymer. The mechanism whereby BSA was incorporated into the crystalline layer and the rate of release of the truly incorporated depot were likewise unaffected by the nature of the polymeric carrier. Our biomimetic coating technique could be applied to either spongy or fibrous bone-defect-filling organic polymers, with a view to rendering them osteoconductive and osteoinductive.