910 resultados para algebraic K-theory
Resumo:
In normal child development, both individual and group pretense first emerges at approximately two years of age. The metarepresentational account of pretense holds that children already have the concept PRETEND when they first engage in early group pretense. A behavioristic account suggests that early group pretense is analogous to early beliefs or desires and thus require no mental state concepts. I argue that a behavioral account does not explain the actual behavior observed in children and it cannot explain how children come to understand that a specific action is one of pretense versus one of belief. I conclude that a mentalistic explanation of pretense best explains the behavior under consideration.
Resumo:
My research investigates why nouns are learned disproportionately more frequently than other kinds of words during early language acquisition (Gentner, 1982; Gleitman, et al., 2004). This question must be considered in the context of cognitive development in general. Infants have two major streams of environmental information to make meaningful: perceptual and linguistic. Perceptual information flows in from the senses and is processed into symbolic representations by the primitive language of thought (Fodor, 1975). These symbolic representations are then linked to linguistic input to enable language comprehension and ultimately production. Yet, how exactly does perceptual information become conceptualized? Although this question is difficult, there has been progress. One way that children might have an easier job is if they have structures that simplify the data. Thus, if particular sorts of perceptual information could be separated from the mass of input, then it would be easier for children to refer to those specific things when learning words (Spelke, 1990; Pylyshyn, 2003). It would be easier still, if linguistic input was segmented in predictable ways (Gentner, 1982; Gleitman, et al., 2004) Unfortunately the frequency of patterns in lexical or grammatical input cannot explain the cross-cultural and cross-linguistic tendency to favor nouns over verbs and predicates. There are three examples of this failure: 1) a wide variety of nouns are uttered less frequently than a smaller number of verbs and yet are learnt far more easily (Gentner, 1982); 2) word order and morphological transparency offer no insight when you contrast the sentence structures and word inflections of different languages (Slobin, 1973) and 3) particular language teaching behaviors (e.g. pointing at objects and repeating names for them) have little impact on children's tendency to prefer concrete nouns in their first fifty words (Newport, et al., 1977). Although the linguistic solution appears problematic, there has been increasing evidence that the early visual system does indeed segment perceptual information in specific ways before the conscious mind begins to intervene (Pylyshyn, 2003). I argue that nouns are easier to learn because their referents directly connect with innate features of the perceptual faculty. This hypothesis stems from work done on visual indexes by Zenon Pylyshyn (2001, 2003). Pylyshyn argues that the early visual system (the architecture of the "vision module") segments perceptual data into pre-conceptual proto-objects called FINSTs. FINSTs typically correspond to physical things such as Spelke objects (Spelke, 1990). Hence, before conceptualization, visual objects are picked out by the perceptual system demonstratively, like a finger pointing indicating ‘this’ or ‘that’. I suggest that this primitive system of demonstration elaborates on Gareth Evan's (1982) theory of nonconceptual content. Nouns are learnt first because their referents attract demonstrative visual indexes. This theory also explains why infants less often name stationary objects such as plate or table, but do name things that attract the focal attention of the early visual system, i.e., small objects that move, such as ‘dog’ or ‘ball’. This view leaves open the question how blind children learn words for visible objects and why children learn category nouns (e.g. 'dog'), rather than proper nouns (e.g. 'Fido') or higher taxonomic distinctions (e.g. 'animal').
Resumo:
The need for the development of effective business curricula that meets the needs of the marketplace has created an increase in the adoption of core competencies lists identifying appropriate graduate skills. Many organisations and tertiary institutions have individual graduate capabilities lists including skills deemed essential for success. Skills recognised as ‘critical thinking’ are popular inclusions on core competencies and graduate capability lists. While there is literature outlining ‘critical thinking’ frameworks, methods of teaching it and calls for its integration into business curricula, few studies actually identify quantifiable improvements achieved in this area. This project sought to address the development of ‘critical thinking’ skills in a management degree program by embedding a process for critical thinking within a theory unit undertaken by students early in the program. Focus groups and a student survey were used to identify issues of both content and implementation and to develop a student perspective on their needs in thinking critically. A process utilising a framework of critical thinking was integrated through a workbook of weekly case studies for group analysis, discussions and experiential exercises. The experience included formative and summative assessment. Initial results indicate a greater valuation by students of their experience in the organisation theory unit; better marks for mid semester essay assignments and higher evaluations on the university administered survey of students’ satisfaction.
Resumo:
There has been considerable research conducted over the last 20 years focused on predicting motor vehicle crashes on transportation facilities. The range of statistical models commonly applied includes binomial, Poisson, Poisson-gamma (or negative binomial), zero-inflated Poisson and negative binomial models (ZIP and ZINB), and multinomial probability models. Given the range of possible modeling approaches and the host of assumptions with each modeling approach, making an intelligent choice for modeling motor vehicle crash data is difficult. There is little discussion in the literature comparing different statistical modeling approaches, identifying which statistical models are most appropriate for modeling crash data, and providing a strong justification from basic crash principles. In the recent literature, it has been suggested that the motor vehicle crash process can successfully be modeled by assuming a dual-state data-generating process, which implies that entities (e.g., intersections, road segments, pedestrian crossings, etc.) exist in one of two states—perfectly safe and unsafe. As a result, the ZIP and ZINB are two models that have been applied to account for the preponderance of “excess” zeros frequently observed in crash count data. The objective of this study is to provide defensible guidance on how to appropriate model crash data. We first examine the motor vehicle crash process using theoretical principles and a basic understanding of the crash process. It is shown that the fundamental crash process follows a Bernoulli trial with unequal probability of independent events, also known as Poisson trials. We examine the evolution of statistical models as they apply to the motor vehicle crash process, and indicate how well they statistically approximate the crash process. We also present the theory behind dual-state process count models, and note why they have become popular for modeling crash data. A simulation experiment is then conducted to demonstrate how crash data give rise to “excess” zeros frequently observed in crash data. It is shown that the Poisson and other mixed probabilistic structures are approximations assumed for modeling the motor vehicle crash process. Furthermore, it is demonstrated that under certain (fairly common) circumstances excess zeros are observed—and that these circumstances arise from low exposure and/or inappropriate selection of time/space scales and not an underlying dual state process. In conclusion, carefully selecting the time/space scales for analysis, including an improved set of explanatory variables and/or unobserved heterogeneity effects in count regression models, or applying small-area statistical methods (observations with low exposure) represent the most defensible modeling approaches for datasets with a preponderance of zeros
Resumo:
Statisticians along with other scientists have made significant computational advances that enable the estimation of formerly complex statistical models. The Bayesian inference framework combined with Markov chain Monte Carlo estimation methods such as the Gibbs sampler enable the estimation of discrete choice models such as the multinomial logit (MNL) model. MNL models are frequently applied in transportation research to model choice outcomes such as mode, destination, or route choices or to model categorical outcomes such as crash outcomes. Recent developments allow for the modification of the potentially limiting assumptions of MNL such as the independence from irrelevant alternatives (IIA) property. However, relatively little transportation-related research has focused on Bayesian MNL models, the tractability of which is of great value to researchers and practitioners alike. This paper addresses MNL model specification issues in the Bayesian framework, such as the value of including prior information on parameters, allowing for nonlinear covariate effects, and extensions to random parameter models, so changing the usual limiting IIA assumption. This paper also provides an example that demonstrates, using route-choice data, the considerable potential of the Bayesian MNL approach with many transportation applications. This paper then concludes with a discussion of the pros and cons of this Bayesian approach and identifies when its application is worthwhile
Resumo:
A hybrid genetic algorithm/scaled conjugate gradient regularisation method is designed to alleviate ANN `over-fitting'. In application to day-ahead load forecasting, the proposed algorithm performs better than early-stopping and Bayesian regularisation, showing promising initial results.
Resumo:
This paper argues, somewhat along a Simmelian line, that political theory may produce practical and universal theories like those developed in theoretical physics. The reasoning behind this paper is to show that the theory of ‘basic democracy’ may be true by way of comparing it to Einstein’s Special Relativity – specifically concerning the parameters of symmetry, unification, simplicity, and utility. These parameters are what make a theory in physics as meeting them not only fits with current knowledge, but also produces paths towards testing (application). As the theory of ‘basic democracy’ may meet these same parameters, it could settle the debate concerning the definition of democracy. This will be argued firstly by discussing what the theory of ‘basic democracy’ is and why it differs from previous work; secondly by explaining the parameters chosen (as in why these and not others confirm or scuttle theories); and thirdly by comparing how Special Relativity and the theory of ‘basic democracy’ may match the parameters.
Resumo:
A high performance, low computational complexity rate-based flow control algorithm which can avoid congestion and achieve fairness is important to ATM available bit rate service. The explicit rate allocation algorithm proposed by Kalampoukas et al. is designed to achieve max–min fairness in ATM networks. It has several attractive features, such as a fixed computational complexity of O(1) and the guaranteed convergence to max–min fairness. In this paper, certain drawbacks of the algorithm, such as the severe overload of an outgoing link during transient period and the non-conforming use of the current cell rate field in a resource management cell, have been identified and analysed; a new algorithm which overcomes these drawbacks is proposed. The proposed algorithm simplifies the rate computation as well. Compared with Kalampoukas's algorithm, it has better performance in terms of congestion avoidance and smoothness of rate allocation.
Resumo:
Balancing between the provision of high quality of service and running within a tight budget is one of the biggest challenges for most metro railway operators around the world. Conventionally, one possible approach for the operator to adjust the time schedule is to alter the stop time at stations, if other system constraints, such as traction equipment characteristic, are not taken into account. Yet it is not an effective, flexible and economical method because the run-time of a train simply cannot be extended without limitation, and a balance between run-time and energy consumption has to be maintained. Modification or installation of a new signalling system not only increases the capital cost, but also affects the normal train service. Therefore, in order to procure a more effective, flexible and economical means to improve the quality of service, optimisation of train performance by coasting point identification has become more attractive and popular. However, identifying the necessary starting points for coasting under the constraints of current service conditions is no simple task because train movement is attributed by a large number of factors, most of which are non-linear and inter-dependent. This paper presents an application of genetic algorithms (GA) to search for the appropriate coasting points and investigates the possible improvement on computation time and fitness of genes.
Resumo:
The link between measured sub-saturated hygroscopicity and cloud activation potential of secondary organic aerosol particles produced by the chamber photo-oxidation of α-pinene in the presence or absence of ammonium sulphate seed aerosol was investigated using two models of varying complexity. A simple single hygroscopicity parameter model and a more complex model (incorporating surface effects) were used to assess the detail required to predict the cloud condensation nucleus (CCN) activity from the subsaturated water uptake. Sub-saturated water uptake measured by three hygroscopicity tandem differential mobility analyser (HTDMA) instruments was used to determine the water activity for use in the models. The predicted CCN activity was compared to the measured CCN activation potential using a continuous flow CCN counter. Reconciliation using the more complex model formulation with measured cloud activation could be achieved widely different assumed surface tension behavior of the growing droplet; this was entirely determined by the instrument used as the source of water activity data. This unreliable derivation of the water activity as a function of solute concentration from sub-saturated hygroscopicity data indicates a limitation in the use of such data in predicting cloud condensation nucleus behavior of particles with a significant organic fraction. Similarly, the ability of the simpler single parameter model to predict cloud activation behaviour was dependent on the instrument used to measure sub-saturated hygroscopicity and the relative humidity used to provide the model input. However, agreement was observed for inorganic salt solution particles, which were measured by all instruments in agreement with theory. The difference in HTDMA data from validated and extensively used instruments means that it cannot be stated with certainty the detail required to predict the CCN activity from sub-saturated hygroscopicity. In order to narrow the gap between measurements of hygroscopic growth and CCN activity the processes involved must be understood and the instrumentation extensively quality assured. It is impossible to say from the results presented here due to the differences in HTDMA data whether: i) Surface tension suppression occurs ii) Bulk to surface partitioning is important iii) The water activity coefficient changes significantly as a function of the solute concentration.
Resumo:
This work examines the algebraic cryptanalysis of small scale variants of the LEX-BES. LEX-BES is a stream cipher based on the Advanced Encryption Standard (AES) block cipher. LEX is a generic method proposed for constructing a stream cipher from a block cipher, initially introduced by Biryukov at eSTREAM, the ECRYPT Stream Cipher project in 2005. The Big Encryption System (BES) is a block cipher introduced at CRYPTO 2002 which facilitates the algebraic analysis of the AES block cipher. In this article, experiments were conducted to find solutions of equation systems describing small scale LEX-BES using Gröbner Basis computations. This follows a similar approach to the work by Cid, Murphy and Robshaw at FSE 2005 that investigated algebraic cryptanalysis on small scale variants of the BES. The difference between LEX-BES and BES is that due to the way the keystream is extracted, the number of unknowns in LEX-BES equations is fewer than the number in BES. As far as the authors know, this attempt is the first at creating solvable equation systems for stream ciphers based on the LEX method using Gröbner Basis computations.
Resumo:
Plenary Session: "New Voices in Children's Literature"
Resumo:
This study reports on the impact of a "drink driving education program" taught to grade ten high school students. The program which involves twelve lessons uses strategies based on the Ajzen and Madden theory of planned behavior. Students were trained to use alternatives to drink driving and passenger behaviors. One thousand seven hundred and seventy-four students who had been taught the program in randomly assigned control and intervention schools were followed up three years later. There had been a major reduction in drink driving behaviors in both intervention and control students. In addition to this cohort change there was a trend toward reduced drink driving in the intervention group and a significant reduction in passenger behavior in this group. Readiness to use alternatives suggested that the major impact of the program was on students who were experimenting with the behavior at the time the program was taught. The program seems to have optimized concurrent social attitude and behavior change.
Resumo:
A consistent finding in the literature is that males report greater usage of drugs and subsequently greater amounts of drug driving. Research also suggests that vicarious influences may be more pertinent to males than to females. Utilising Stafford and Warr’s (1993) reconceptualization of deterrence theory, this study sought to determine if the relative deterrent impact of zero-tolerance drug driving laws is disparate between genders. A sample of motorists’ (N = 899) completed a self-report questionnaire assessing participants frequency of drug driving and personal and vicarious experiences with punishment and punishment avoidance. Results show that males were significantly more likely to report future intentions of drug driving. Additionally, vicarious experiences of punishment avoidance was a more influential predictor of future drug driving instances for males with personal experiences of punishment avoidance a more influential predictor for females. These findings can inform gender sensitive media campaigns and interventions for convicted drug drivers.