718 resultados para Task-based learning
Resumo:
Questo volume di tesi, dal titolo “Sviluppo di una piattaforma per fornire contenuti formativi sfruttando la gamification: un caso di studio aziendale”, tratta argomenti quali e-learning e game-based learning e come/quando questi possono essere applicati, presentando inoltre un esempio di prototipo di applicazione web che può fungere a questo scopo. Nello specifico, il primo capitolo si compone di tre sezioni principali: la prima introduce il concetto di e-learning e le molteplici declinazioni ad esso applicabili, oltre a presentare qualche cenno di carattere storico per individuare questo fenomeno nel tempo; la seconda tratta i campi d’applicazione e le tipologie di didattica inscrivibili nel termine “Game-based learning”. Nella terza sezione, “builder per esperienze gamificate”, infine, vengono presentate e analizzate due applicazioni web che possono concorrere alla creazione di un’esperienza di formazione gamificata in ambito scolastico e/o lavorativo. Il secondo e il terzo capitolo, rispettivamente con titoli “Tecnologie” e “Applicazione web: BKM – Learning Game”, sono fortemente correlati: vengono infatti presentate le tecnologie (nello specifico HTML, CSS, Javascript, NodeJs, VueJs e JSON) utilizzate per la creazione del progetto di tesi, poi viene descritto l’applicativo web risultante nel suo complesso. Il progetto è stato implementato durante il tirocinio in preparazione della prova finale, presso l’azienda Bookmark s.r.l.
Resumo:
Theoretical models of social learning predict that individuals can benefit from using strategies that specify when and whom to copy. Here the interaction of two social learning strategies, model age-based biased copying and copy when uncertain, was investigated. Uncertainty was created via a systematic manipulation of demonstration efficacy (completeness) and efficiency (causal relevance of some actions). The participants, 4- to 6-year-old children (N = 140), viewed both an adult model and a child model, each of whom used a different tool on a novel task. They did so in a complete condition, a near-complete condition, a partial demonstration condition, or a no-demonstration condition. Half of the demonstrations in each condition incorporated causally irrelevant actions by the models. Social transmission was assessed by first responses but also through children’s continued fidelity, the hallmark of social traditions. Results revealed a bias to copy the child model both on first response and in continued interactions. Demonstration efficacy and efficiency did not affect choice of model at first response but did influence solution exploration across trials, with demonstrations containing causally irrelevant actions decreasing exploration of alternative methods. These results imply that uncertain environments can result in canalized social learning from specific classes of mode
Resumo:
This paper introduces Collage, a high-level IMS-LD compliant authoring tool that is specialized for CSCL (Computer-Supported Collaborative Learning). Nowadays CSCL is a key trend in elearning since it highlights the importance of social interactions as an essential element of learning. CSCL is an interdisciplinary domain, which demands participatory design techniques that allow teachers to get directly involved in design activities. Developing CSCL designs using LD is a difficult task for teachers since LD is a complex technical specification and modelling collaborative characteristics can be tricky. Collage helps teachers in the process of creating their own potentially effective collaborative Learning Designs by reusing and customizing patterns, according to the requirements of a particular learning situation. These patterns, called Collaborative Learning Flow Patterns (CLFPs), represent best practices that are repetitively used by practitioners when structuring the flow of (collaborative) learning activities. An example of an LD that can be created using Collage is illustrated in the paper. Preliminary evaluation results show that teachers, with experience in CL but without LD knowledge, can successfully design real collaborative learning experiences using Collage.
Resumo:
Multisensory experiences influence subsequent memory performance and brain responses. Studies have thus far concentrated on semantically congruent pairings, leaving unresolved the influence of stimulus pairing and memory sub-types. Here, we paired images with unique, meaningless sounds during a continuous recognition task to determine if purely episodic, single-trial multisensory experiences can incidentally impact subsequent visual object discrimination. Psychophysics and electrical neuroimaging analyses of visual evoked potentials (VEPs) compared responses to repeated images either paired or not with a meaningless sound during initial encounters. Recognition accuracy was significantly impaired for images initially presented as multisensory pairs and could not be explained in terms of differential attention or transfer of effects from encoding to retrieval. VEP modulations occurred at 100-130ms and 270-310ms and stemmed from topographic differences indicative of network configuration changes within the brain. Distributed source estimations localized the earlier effect to regions of the right posterior temporal gyrus (STG) and the later effect to regions of the middle temporal gyrus (MTG). Responses in these regions were stronger for images previously encountered as multisensory pairs. Only the later effect correlated with performance such that greater MTG activity in response to repeated visual stimuli was linked with greater performance decrements. The present findings suggest that brain networks involved in this discrimination may critically depend on whether multisensory events facilitate or impair later visual memory performance. More generally, the data support models whereby effects of multisensory interactions persist to incidentally affect subsequent behavior as well as visual processing during its initial stages.
Resumo:
Traditional psychometric theory and practice classify people according to broad ability dimensions but do not examine how these mental processes occur. Hunt and Lansman (1975) proposed a 'distributed memory' model of cognitive processes with emphasis on how to describe individual differences based on the assumption that each individual possesses the same components. It is in the quality of these components ~hat individual differences arise. Carroll (1974) expands Hunt's model to include a production system (after Newell and Simon, 1973) and a response system. He developed a framework of factor analytic (FA) factors for : the purpose of describing how individual differences may arise from them. This scheme is to be used in the analysis of psychometric tes ts . Recent advances in the field of information processing are examined and include. 1) Hunt's development of differences between subjects designated as high or low verbal , 2) Miller's pursuit of the magic number seven, plus or minus two, 3) Ferguson's examination of transfer and abilities and, 4) Brown's discoveries concerning strategy teaching and retardates . In order to examine possible sources of individual differences arising from cognitive tasks, traditional psychometric tests were searched for a suitable perceptual task which could be varied slightly and administered to gauge learning effects produced by controlling independent variables. It also had to be suitable for analysis using Carroll's f ramework . The Coding Task (a symbol substitution test) found i n the Performance Scale of the WISe was chosen. Two experiments were devised to test the following hypotheses. 1) High verbals should be able to complete significantly more items on the Symbol Substitution Task than low verbals (Hunt, Lansman, 1975). 2) Having previous practice on a task, where strategies involved in the task may be identified, increases the amount of output on a similar task (Carroll, 1974). J) There should be a sUbstantial decrease in the amount of output as the load on STM is increased (Miller, 1956) . 4) Repeated measures should produce an increase in output over trials and where individual differences in previously acquired abilities are involved, these should differentiate individuals over trials (Ferguson, 1956). S) Teaching slow learners a rehearsal strategy would improve their learning such that their learning would resemble that of normals on the ,:same task. (Brown, 1974). In the first experiment 60 subjects were d.ivided·into high and low verbal, further divided randomly into a practice group and nonpractice group. Five subjects in each group were assigned randomly to work on a five, seven and nine digit code throughout the experiment. The practice group was given three trials of two minutes each on the practice code (designed to eliminate transfer effects due to symbol similarity) and then three trials of two minutes each on the actual SST task . The nonpractice group was given three trials of two minutes each on the same actual SST task . Results were analyzed using a four-way analysis of variance . In the second experiment 18 slow learners were divided randomly into two groups. one group receiving a planned strategy practioe, the other receiving random practice. Both groups worked on the actual code to be used later in the actual task. Within each group subjects were randomly assigned to work on a five, seven or nine digit code throughout. Both practice and actual tests consisted on three trials of two minutes each. Results were analyzed using a three-way analysis of variance . It was found in t he first experiment that 1) high or low verbal ability by itself did not produce significantly different results. However, when in interaction with the other independent variables, a difference in performance was noted . 2) The previous practice variable was significant over all segments of the experiment. Those who received previo.us practice were able to score significantly higher than those without it. J) Increasing the size of the load on STM severely restricts performance. 4) The effect of repeated trials proved to be beneficial. Generally, gains were made on each successive trial within each group. S) In the second experiment, slow learners who were allowed to practice randomly performed better on the actual task than subjeots who were taught the code by means of a planned strategy. Upon analysis using the Carroll scheme, individual differences were noted in the ability to develop strategies of storing, searching and retrieving items from STM, and in adopting necessary rehearsals for retention in STM. While these strategies may benef it some it was found that for others they may be harmful . Temporal aspects and perceptual speed were also found to be sources of variance within individuals . Generally it was found that the largest single factor i nfluencing learning on this task was the repeated measures . What e~ables gains to be made, varies with individuals . There are environmental factors, specific abilities, strategy development, previous learning, amount of load on STM , perceptual and temporal parameters which influence learning and these have serious implications for educational programs .
Resumo:
Darrerament, l'interès pel desenvolupament d'aplicacions amb robots submarins autònoms (AUV) ha crescut de forma considerable. Els AUVs són atractius gràcies al seu tamany i el fet que no necessiten un operador humà per pilotar-los. Tot i això, és impossible comparar, en termes d'eficiència i flexibilitat, l'habilitat d'un pilot humà amb les escasses capacitats operatives que ofereixen els AUVs actuals. L'utilització de AUVs per cobrir grans àrees implica resoldre problemes complexos, especialment si es desitja que el nostre robot reaccioni en temps real a canvis sobtats en les condicions de treball. Per aquestes raons, el desenvolupament de sistemes de control autònom amb l'objectiu de millorar aquestes capacitats ha esdevingut una prioritat. Aquesta tesi tracta sobre el problema de la presa de decisions utilizant AUVs. El treball presentat es centra en l'estudi, disseny i aplicació de comportaments per a AUVs utilitzant tècniques d'aprenentatge per reforç (RL). La contribució principal d'aquesta tesi consisteix en l'aplicació de diverses tècniques de RL per tal de millorar l'autonomia dels robots submarins, amb l'objectiu final de demostrar la viabilitat d'aquests algoritmes per aprendre tasques submarines autònomes en temps real. En RL, el robot intenta maximitzar un reforç escalar obtingut com a conseqüència de la seva interacció amb l'entorn. L'objectiu és trobar una política òptima que relaciona tots els estats possibles amb les accions a executar per a cada estat que maximitzen la suma de reforços totals. Així, aquesta tesi investiga principalment dues tipologies d'algoritmes basats en RL: mètodes basats en funcions de valor (VF) i mètodes basats en el gradient (PG). Els resultats experimentals finals mostren el robot submarí Ictineu en una tasca autònoma real de seguiment de cables submarins. Per portar-la a terme, s'ha dissenyat un algoritme anomenat mètode d'Actor i Crític (AC), fruit de la fusió de mètodes VF amb tècniques de PG.
Resumo:
This paper reports three experiments that examine the role of similarity processing in McGeorge and Burton's (1990) incidental learning task. In the experiments subjects performed a distractor task involving four-digit number strings, all of which conformed to a simple hidden rule. They were then given a forced-choice memory test in which they were presented with pairs of strings and were led to believe that one string of each pair had appeared in the prior learning phase. Although this was not the case, one string of each pair did conform to the hidden rule. Experiment 1 showed that, as in the McGeorge and Burton study, subjects were significantly more likely to select test strings that conformed to the hidden rule. However, additional analyses suggested that rather than having implicitly abstracted the rule, subjects may have been selecting strings that were in some way similar to those seen during the learning phase. Experiments 2 and 3 were designed to try to separate out effects due to similarity from those due to implicit rule abstraction. It was found that the results were more consistent with a similarity-based model than implicit rule abstraction per se.
Resumo:
Objectives To evaluate the learning, retention and transfer of performance improvements after Nintendo Wii Fit (TM) training in patients with Parkinson's disease and healthy elderly people. Design Longitudinal, controlled clinical study. Participants Sixteen patients with early-stage Parkinson's disease and 11 healthy elderly people. Interventions Warm-up exercises and Wii Fit training that involved training motor (shifts centre of gravity and step alternation) and cognitive skills. A follow-up evaluative Wii Fit session was held 60 days after the end of training. Participants performed a functional reach test before and after training as a measure of learning transfer. Main outcome measures Learning and retention were determined based on the scores of 10 Wii Fit games over eight sessions. Transfer of learning was assessed after training using the functional reach test. Results Patients with Parkinson's disease showed no deficit in learning or retention on seven of the 10 games, despite showing poorer performance on five games compared with the healthy elderly group. Patients with Parkinson's disease showed marked learning deficits on three other games, independent of poorer initial performance. This deficit appears to be associated with cognitive demands of the games which require decision-making, response inhibition, divided attention and working memory. Finally, patients with Parkinson's disease were able to transfer motor ability trained on the games to a similar untrained task. Conclusions The ability of patients with Parkinson's disease to learn, retain and transfer performance improvements after training on the Nintendo Wii Fit depends largely on the demands, particularly cognitive demands, of the games involved, reiterating the importance of game selection for rehabilitation purposes. (C) 2012 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Resumo:
In the collective imaginaries a robot is a human like machine as any androids in science fiction. However the type of robots that you will encounter most frequently are machinery that do work that is too dangerous, boring or onerous. Most of the robots in the world are of this type. They can be found in auto, medical, manufacturing and space industries. Therefore a robot is a system that contains sensors, control systems, manipulators, power supplies and software all working together to perform a task. The development and use of such a system is an active area of research and one of the main problems is the development of interaction skills with the surrounding environment, which include the ability to grasp objects. To perform this task the robot needs to sense the environment and acquire the object informations, physical attributes that may influence a grasp. Humans can solve this grasping problem easily due to their past experiences, that is why many researchers are approaching it from a machine learning perspective finding grasp of an object using information of already known objects. But humans can select the best grasp amongst a vast repertoire not only considering the physical attributes of the object to grasp but even to obtain a certain effect. This is why in our case the study in the area of robot manipulation is focused on grasping and integrating symbolic tasks with data gained through sensors. The learning model is based on Bayesian Network to encode the statistical dependencies between the data collected by the sensors and the symbolic task. This data representation has several advantages. It allows to take into account the uncertainty of the real world, allowing to deal with sensor noise, encodes notion of causality and provides an unified network for learning. Since the network is actually implemented and based on the human expert knowledge, it is very interesting to implement an automated method to learn the structure as in the future more tasks and object features can be introduced and a complex network design based only on human expert knowledge can become unreliable. Since structure learning algorithms presents some weaknesses, the goal of this thesis is to analyze real data used in the network modeled by the human expert, implement a feasible structure learning approach and compare the results with the network designed by the expert in order to possibly enhance it.
Resumo:
We investigate a recently proposed model for decision learning in a population of spiking neurons where synaptic plasticity is modulated by a population signal in addition to reward feedback. For the basic model, binary population decision making based on spike/no-spike coding, a detailed computational analysis is given about how learning performance depends on population size and task complexity. Next, we extend the basic model to n-ary decision making and show that it can also be used in conjunction with other population codes such as rate or even latency coding.
Resumo:
Training a system to recognize handwritten words is a task that requires a large amount of data with their correct transcription. However, the creation of such a training set, including the generation of the ground truth, is tedious and costly. One way of reducing the high cost of labeled training data acquisition is to exploit unlabeled data, which can be gathered easily. Making use of both labeled and unlabeled data is known as semi-supervised learning. One of the most general versions of semi-supervised learning is self-training, where a recognizer iteratively retrains itself on its own output on new, unlabeled data. In this paper we propose to apply semi-supervised learning, and in particular self-training, to the problem of cursive, handwritten word recognition. The special focus of the paper is on retraining rules that define what data are actually being used in the retraining phase. In a series of experiments it is shown that the performance of a neural network based recognizer can be significantly improved through the use of unlabeled data and self-training if appropriate retraining rules are applied.
Resumo:
In recent decades, there has been an increasing interest in systems comprised of several autonomous mobile robots, and as a result, there has been a substantial amount of development in the eld of Articial Intelligence, especially in Robotics. There are several studies in the literature by some researchers from the scientic community that focus on the creation of intelligent machines and devices capable to imitate the functions and movements of living beings. Multi-Robot Systems (MRS) can often deal with tasks that are dicult, if not impossible, to be accomplished by a single robot. In the context of MRS, one of the main challenges is the need to control, coordinate and synchronize the operation of multiple robots to perform a specic task. This requires the development of new strategies and methods which allow us to obtain the desired system behavior in a formal and concise way. This PhD thesis aims to study the coordination of multi-robot systems, in particular, addresses the problem of the distribution of heterogeneous multi-tasks. The main interest in these systems is to understand how from simple rules inspired by the division of labor in social insects, a group of robots can perform tasks in an organized and coordinated way. We are mainly interested on truly distributed or decentralized solutions in which the robots themselves, autonomously and in an individual manner, select a particular task so that all tasks are optimally distributed. In general, to perform the multi-tasks distribution among a team of robots, they have to synchronize their actions and exchange information. Under this approach we can speak of multi-tasks selection instead of multi-tasks assignment, which means, that the agents or robots select the tasks instead of being assigned a task by a central controller. The key element in these algorithms is the estimation ix of the stimuli and the adaptive update of the thresholds. This means that each robot performs this estimate locally depending on the load or the number of pending tasks to be performed. In addition, it is very interesting the evaluation of the results in function in each approach, comparing the results obtained by the introducing noise in the number of pending loads, with the purpose of simulate the robot's error in estimating the real number of pending tasks. The main contribution of this thesis can be found in the approach based on self-organization and division of labor in social insects. An experimental scenario for the coordination problem among multiple robots, the robustness of the approaches and the generation of dynamic tasks have been presented and discussed. The particular issues studied are: Threshold models: It presents the experiments conducted to test the response threshold model with the objective to analyze the system performance index, for the problem of the distribution of heterogeneous multitasks in multi-robot systems; also has been introduced additive noise in the number of pending loads and has been generated dynamic tasks over time. Learning automata methods: It describes the experiments to test the learning automata-based probabilistic algorithms. The approach was tested to evaluate the system performance index with additive noise and with dynamic tasks generation for the same problem of the distribution of heterogeneous multi-tasks in multi-robot systems. Ant colony optimization: The goal of the experiments presented is to test the ant colony optimization-based deterministic algorithms, to achieve the distribution of heterogeneous multi-tasks in multi-robot systems. In the experiments performed, the system performance index is evaluated by introducing additive noise and dynamic tasks generation over time.
Resumo:
This paper focuses on the general problem of coordinating multiple robots. More specifically, it addresses the self-selection of heterogeneous specialized tasks by autonomous robots. In this paper we focus on a specifically distributed or decentralized approach as we are particularly interested in a decentralized solution where the robots themselves autonomously and in an individual manner, are responsible for selecting a particular task so that all the existing tasks are optimally distributed and executed. In this regard, we have established an experimental scenario to solve the corresponding multi-task distribution problem and we propose a solution using two different approaches by applying Response Threshold Models as well as Learning Automata-based probabilistic algorithms. We have evaluated the robustness of the algorithms, perturbing the number of pending loads to simulate the robot’s error in estimating the real number of pending tasks and also the dynamic generation of loads through time. The paper ends with a critical discussion of experimental results.