Learning Spike-Based Population Codes by Reward and Population Feedback


Autoria(s): Friedrich, Johannes; Urbanczik, Robert; Senn, Walter
Data(s)

2010

Resumo

We investigate a recently proposed model for decision learning in a population of spiking neurons where synaptic plasticity is modulated by a population signal in addition to reward feedback. For the basic model, binary population decision making based on spike/no-spike coding, a detailed computational analysis is given about how learning performance depends on population size and task complexity. Next, we extend the basic model to n-ary decision making and show that it can also be used in conjunction with other population codes such as rate or even latency coding.

Formato

application/pdf

Identificador

http://boris.unibe.ch/1258/1/neco_2010_E05-09-1010.pdf

Friedrich, Johannes; Urbanczik, Robert; Senn, Walter (2010). Learning Spike-Based Population Codes by Reward and Population Feedback. Neural computation, 22(1698-1717), pp. 1698-1717. Cambridge, Mass.: MIT Press 10.1162/neco.2010.05-09-1010 <http://dx.doi.org/10.1162/neco.2010.05-09-1010>

doi:10.7892/boris.1258

info:doi:10.1162/neco.2010.05-09-1010

info:pmid:20235820

urn:issn:0899-7667

Idioma(s)

eng

Publicador

MIT Press

Relação

http://boris.unibe.ch/1258/

Direitos

info:eu-repo/semantics/openAccess

Fonte

Friedrich, Johannes; Urbanczik, Robert; Senn, Walter (2010). Learning Spike-Based Population Codes by Reward and Population Feedback. Neural computation, 22(1698-1717), pp. 1698-1717. Cambridge, Mass.: MIT Press 10.1162/neco.2010.05-09-1010 <http://dx.doi.org/10.1162/neco.2010.05-09-1010>

Palavras-Chave #610 Medicine & health
Tipo

info:eu-repo/semantics/article

info:eu-repo/semantics/publishedVersion

NonPeerReviewed