849 resultados para Ta-Cu composites
Resumo:
An approach was developed to estimate molecular weight distribution of water-soluble Cu, Fe, Mn and Zn species in Brazil nut, cupuassu seed and coconut pulp by size exclusion chromatography (SEC) coupled on-line to ultra-violet (UV) and off-line to graphite furnace atomic absorption spectrometry (GF-AAS) detectors and matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF-MS). SEC-UV analytical signals showed the prevalence of high molecular weight (HMW) species (79-1.7 kDa for Brazil nut, 50-1.7 kDa for coconut pulp, and 34-1.7 kDa for cupuassu seeds). The Brazil nut SEC-UV, GF-AAS and MALDI-TOF mass spectra gave confirmation of the association of the elements with water-soluble compounds. The elemental profiles were associated with fractions of compounds of molecular weight 1.2-16 kDa for Brazil nut, 1.7-13 kDa for coconut pulp, and 1.2-7.6 kDa for cupuassu seeds. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Dental composites can be improved by heat treatment, as a possible way to increase mechanical properties due to additional cure (post-cure). Direct dental composites are essentially similar to the indirect ones, supposing they have the same indication. Therefore, to establish a heat treatment protocol for direct composites, using as indirect (photoactivated by continuous and pulse-delay techniques), a characterization (TG/DTG and DSC) is necessary to determine parameters, such as mass loss by thermal decomposition, heat of reaction and glass transition temperature (T (g)). By the results of this study, a heat treatment could be carried out above 160 A degrees C (above T (g), and even higher than the endset exothermic event) and under 180 A degrees C (temperature of significant initial mass loss).
Resumo:
In this work Cu and Fe bioavailability in cashew nuts was evaluated using in vitro method. Extractions with simulated gastric and intestinal fluids and dialysis procedures were applied for this purpose. The proteins separation and quantification were performed by size exclusion chromatography (SEC) coupled on-line to ultra-violet (UV) and off-line to simultaneous multielement atomic absorption spectrometry (SIMAAS). The SEC-UV and SIMAAS profiles of the protein fractions obtained by alkaline extraction (NaOH) and precipitation with HCl indicated the presence of high and low molecular weight species in the range between >75 kDa and 9.3 kDa. Almost 83% of Cu and 78% of Fe were extracted during cashew nut digestion and 90% of both elements were dialyzed. With these results it is possible to assume that 75% of Cu and 70% of Fe present in cashew nut could be bioavailable. The SEC-UV and SIMAAS chromatographic profiles obtained after in vitro gastrointestinal digestion reveal that Cu and Fe not dialyzed can be associated to a compound of 9.2 kDa. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We have demonstrated previously that the complex bis[(2-oxindol-3-ylimino)-2-(2-aminoethyl)pyridine-N,N`]copper(II), named [Cu(isaepy)(2)], induces AMPK (AMP-activated protein kinase)-dependent/p53-mediated apoptosis in tumour cells by targeting mitochondria. In the present study, we found that p38(MAPK) (p38 mitogen-activated protein kinase) is the molecular link in the phosphorylation cascade connecting AMPK to p53. Transfection of SH-SY5Y cells with a dominant-negative mutant of AMPK resulted in a decrease in apoptosis and a significant reduction in phospho-active p38(MAPK) and p53. Similarly, reverse genetics of p38(MAPK) yielded a reduction in p53 and a decrease in the extent of apoptosis, confirming an exclusive hierarchy of activation that proceeds via AMPK/p38(MAPK)/p53. Fuel supplies counteracted [Cu(isaepy)(2)]-induced apoptosis and AMPK/p38(MAPK)/p53 activation, with glucose being the most effective, suggesting a role for energetic imbalance in [Cu(isaepy)(2)] toxicity. Co-administration of 3BrPA (3-bromopyruvate), a well-known inhibitor of glycolysis, and succinate dehydrogenase, enhanced apoptosis and AMPK/p38(MAPK)/p53 signalling pathway activation. Under these conditions, no toxic effect was observed in SOD (superoxide dismutase)-overexpressing SH-SY5Y cells or in PCNs (primary cortical neurons), which are, conversely, sensitized to the combined treatment with [Cu(isaepy)(2)] and 3BrPA only if grown in low-glucose medium or incubated with the glucose-6-phosphate dehydrogenase inhibitor dehydroepiandrosterone. Overall, the results suggest that NADPH deriving from the pentose phosphate pathway contributes to PCN resistance to [Cu(isaepy)(2)] toxicity and propose its employment in combination with 3BrPA as possible tool for cancer treatment.
Resumo:
The reaction Of Cu(ClO(4))(2)center dot 6H(2)O with dimethylglyoxime (H(2)dmg) in a 1:1 mole ratio in aqueous methanol at room temperature affords the dinuclear complex [Cu(2)(mu-Hdmg)(4)] (1). Reaction of 1 with [Cu(bpy)(H(2)O)(2)](ClO(4))(2) (bpy = 2,2`-bipyridine) in a 1:1 mole ratio in aqueous methanol at room temperature yields the tetranuclear complex [Cu(2)(mu-HdMg)(2)(mu-dMg)(2)(bpy)(2)(H(2)O)(2)](ClO(4))(2) (2). The direct reaction of Cu(ClO(4))(2)center dot 6H(2)O with H(2)dmg and bpy in a 2:21 mole ratio in aqueous methanol at room temperature also yields 2 quantitatively. The complexes 1 and 2 were structurally characterized by X-ray crystallography. Unlike the binding in Ni/Co-dmg, two different types of N-O bridging modes during the oxime based metallacycle formation and stacking of square planar units have been identified in these complexes. The neutral dinuclear complex 1 has CuN(4)O coordination spheres and complex 2 consists of a dicationic [Cu(2)(mu-HdMg)(2)(mu-dMg)(2)(bpy)(2)(H(2)O)(2)](2+) unit and two uncoordinated ClO(4)(-) anions having CuN(4)O and CuN(2)O(3) coordination spheres. The two copper(II) ions are at a distance of 3.846(8) angstrom in 1 for the trans out of plane link and at 3.419(10) and 3.684(10) angstrom in 2 for the trans out of plane and cis in plane arrangements, respectively. The average Cu-N(oxime) distances are 1.953 and 1.935 angstrom, respectively. The average basal and apical Cu-N(oxime) distances are 1.945, 2.295 and 2.429 angstrom. The UV-Vis spectra of 2 is similar to the spectrum of the reaction mixture of 1 and [Cu(bpy)(H(2)O)(2)](2+). Variable temperature magnetic properties measurement shows that the interaction between the paramagnetic copper centers in complex I is antiferromagnetic in nature. The EPR spectra of frozen solution of the complexes at 77 K consist of axially symmetric fine-structure transitions (Delta M(S) = 1) and half-field signals (Delta M(S) = 2) at ca. 1600 G, suggesting the presence of appreciable Cu-Cu interactions. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We previously demonstrated that Bis[(2-oxindol-3-ylimino)-2-(2-aminoethyl) pyridine-N, N`] copper(II) [Cu(isaepy)(2)] was an efficient inducer of the apoptotic mitochondrial pathway. Here, we deeply dissect the mechanisms underlying the ability of Cu(isaepy)(2) to cause mitochondriotoxicity. In particular, we demonstrate that Cu(isaepy)(2) increases NADH-dependent oxygen consumption of isolated mitochondria and that this phenomenon is associated with oxy-radical production and insensitive to adenosine diphosphate. These data indicate that Cu(isaepy)(2) behaves as an uncoupler and this property is also confirmed in cell systems. Particularly, SH-SY5Y cells show: (i) an early loss of mitochondrial transmembrane potential; (ii) a decrease in the expression levels of respiratory complex components and (iii) a significant adenosine triphosphate (ATP) decrement. The causative energetic impairment mediated by Cu(isaepy)(2) in apoptosis is confirmed by experiments carried out with rho(0) cells, or by glucose supplementation, where cell death is significantly inhibited. Moreover, gastric and cervix carcinoma AGS and HeLa cells, which rely most of their ATP production on oxidative phosphorylation, show a marked sensitivity toward Cu(isaepy)(2). Adenosine monophosphate-activated protein kinase (AMPK), which is activated by events increasing the adenosine monophosphate: ATP ratio, is deeply involved in the apoptotic process because the overexpression of its dominant/negative form completely abolishes cell death. Upon glucose supplementation, AMPK is not activated, confirming its role as fuel-sensing enzyme that positively responds to Cu(isaepy)(2)-mediated energetic impairment by committing cells to apoptosis. Overall, data obtained indicate that Cu(isaepy)(2) behaves as delocalized lipophilic cation and induces mitochondrial-sited reactive oxygen species production. This event results in mitochondrial dysfunction and ATP decrease, which in turn triggers AMPK-dependent apoptosis.
Resumo:
Co/Al(2)O(3) Fischer-Tropsch synthesis catalysts promoted with different quantities of Group 11 metals (Cu, Ag, Au) were characterized and tested. The presence of relatively small quantities of such metals enhanced Co reducibility and, in the cases of Ag and Au, improved the surface Co metal active site densities. EXAFS experiments with the most loaded catalyst samples show that only Co-Co and Me-Me (Me = Cu, Ag and Au) coordination could be observed. This suggests that the greater fraction of the metals form different phases. However, the reduction promoting effect of the Group 11 metal is severely hampered once the catalyst receives a mild passivation treatment following primary reduction. An explanation in terms of promoter segregation during primary reduction is proposed. At lower promoter levels (0.83%Ag and 1.51%Au) and higher Ag levels (2.76%), significant gains in Co active site densities were achieved resulting in improved CO conversion levels relative to the unpromoted catalyst. Moreover, slight decreases in light product (e.g., CH(4)) selectivity and slight increases in C(5)+ selectivity were achieved. At high Au loading (5.05%), however, too much Au was loaded which, although significantly increasing the fraction of Co reduced, blocked Co surface sites and resulted in decreased Co conversion rates. While Cu facilitated Co reduction, the increased fraction of reduced Co did not translate to improved active site densities. It appears that a fraction of Cu tended to cover the rim of Co clusters, resulting in decreases in CO conversion rates and detrimental increases in light product selectivity. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
CoFe(2)O(4) nanoparticles were obtained by the co-precipitation method. They were further modified by the adsorption of ricinoleic acid (RA). The non-modified and modified CoFe(2)O(4)/RA nanoparticles were characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), Raman, and Fourier transform infrared (FTIR) spectroscopy. The modified particles present a mean diameter < 20 nm. The adsorption of RA on the CoFe(2)O(4) surface is characterized by the IR absorptions of the RA while in the Raman spectrum the predominant signals are those from the CoFe(2)O(4). The cis-polyisoprene (PI) composite was prepared by dissolving PI in cyclohexane followed by the addition of a magnetic fluid based on CoFe(2)O(4)/RA nanoparticles dispersed in cyclohexane. After solvent evaporation a magnetic composite was obtained and characterized by AFM, Raman, and FTIR measurements. AFM images show uniformly CoFe(2)O(4)/RA particles distributed in the PI matrix. Raman spectra obtained for the composites reveal the characteristic Raman peaks of PI and CoFe(2)O(4) nanoparticles.
Resumo:
A conductive and electrochemically active composite material has been prepared by the combination of bentonite and nickel hydroxide precursor sol. This material exhibits the characteristic intercalation properties of the clay component and the electrochemical and optical properties of nickel hydroxide. The clay particles seem to induce the aggregation of nickel hydroxide, leading to the formation of a layer of alpha-Ni(OH)(2) exhibiting needle like morphology. The composite forms stable films and has been conveniently used for the preparation of modified electrodes exhibiting intercalation and electrochemical properties, thus providing an interesting material for the development of amperometric sensors. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In this work, the electronic and structural characterization of polyaniline (PANI) formed in cavities of zeolites Y (ZY) and Mordenite (MOR) and montmorillonite (MMT) clay having Cu(II) as oxidant agent are presented. The formation of PANI and its structure is analyzed by Resonance Raman, UV-Vis-NIR, FT-IR and N K XANES techniques. In all cases the structure of PANT formed is different from the ""free"" polymer. The presence of azo bonds linked to phenazine-like rings are observed only for PANI-MMT composites, independent of the kind of oxidant agent employed in the synthesis. The presence of Cu(II) ions leads to the formation of Phenosafranine-like rings. The presence of these phenazine-like rings in the structure of confined PANT chains can also contribute to the enhancement of the thermal stability observed for all composites. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The electronic structure and chemical bonding of the ground and low-lying Lambda - S and Omega states of Ta(2) were investigated at the multiconfiguration second-order perturbation theory (CASSCF//CASPT2) level. The ground state of Ta(2) is computed to be a X(3)Sigma(-)(g) state (R(e) = 2.120 angstrom, omega(e) = 323 cm(-1), and D(e) = 4.65 eV), with two low-lying singlet states close to it (a(1) Sigma(+)(g) : T(e) = 409 cm(-1), R(e) = 2.131 angstrom, and omega(e) = 313 cm(-1); b(1) Gamma(g): T(e) = 1, 038 cm(-1), R(e) = 2.127 angstrom, and omega(e) = 316 cm(-1)). These electronic states are derived from the same electronic configuration: vertical bar 13 sigma(2)(g)14 sigma(2)(g)7 delta(2)(g)13 pi(4)(u)>. The effective bond order of the X(3) Sigma(-)(g) state is 4.52, which indicates that the Ta atoms are bound by a quintuple chemical bond. The a(1) Sigma(+)(g) state interacts strongly with the X(3)Sigma(-)(g) g ground state by a second-order spin-orbit interaction, giving rise to the (1)0(g)(+) (ground state) (dominated by the X(3)Sigma(-)(g) Lambda - S ground state) and (9)0(g)(+) (dominated by the a(1) Sigma(+)(g) Lambda - S state) Omega states. These results are in line with those reported for the group 5B homonuclear transition metal diatomics. (C) 2010 Wiley Periodicals, Inc. Int J Quantum Chem 111: 1306-1315, 2011
Resumo:
A new method is presented for spectrophotometric determination of total polyphenols content in wine. The procedure is a modified CUPRAC method based on the reduction of Cu(II), in hydroethanolic medium (pH 7.0) in the presence of neocuproine (2,9-dimethyl-1,10-phenanthroline), by polyphenols, yielding a Cu(I) complexes with maximum absorption peak at 450 nm. The absorbance values are linear (r = 0.998, n = 6) with tannic acid concentrations from 0.4 to 3.6 mu mol L(-1). The limit of detection obtained was 0.41 mu mol L(-1) and relative standard deviation 1.2% (1 mu mol L(-1); n = 8). Recoveries between 80% and 110% (mean value of 95%) were calculated for total polyphenols determination in 14 commercials and 2 synthetic wine samples (with and without sulphite). The proposed procedure is about 1.5 more sensitive than the official Folin-Ciocalteu method. The sensitivities of both methods were compared by the analytical responses of several polyphenols tested in each method. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A flow system exploiting the multicommutation approach is proposed for spectrophotometric determination of tannin in beverages. The procedure is based on the reduction of Cu(II) in the presence of 4,4`-dicarboxy-2,2`-biquinoline, yielding a complex with maximum absorption at 558 nm. Calibration graph was linear (r=0.999) for tannic acid concentrations up to 5.00 mu mol L-1. The detection limit and coefficient of variation were estimated as 10 nmol L-1 (99.7% confidence level) and 1% (1.78 mu mol L-1 tannic acid, n=10), respectively. The sampling rate was 50 determinations per hour. The proposed procedure is more sensitive and selective than the official Folin-Denis method, also minimizing drastically waste generation. Recoveries within 91.8 and 115% were estimated for total tannin determination in tea and wine samples. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The photocatalytic performance of TiO(2)-SiMgO(x) ceramic plates for trichloroethylene abatement in gas phase has been evaluated under sun irradiance conditions. A continuous flow Pyrex glass reactor fixed on the focus of a compound parabolic collector has been used. The performance of the hybrid photocatalyst has been evaluated as the variation of TCE conversion and reaction products formation with the solar irradiance at different total gas flow, TCE concentration, and water vapour content. SiMgO(x) not only provides adsorbent properties to the photocatalyst, but it also allows the effective use of the material during low solar irradiance conditions. The adsorption-desorption phenomena play a pivotal role in the behaviour of the system. Thus, TCE conversion curves present two different branches when the sun irradiance increases (sunrise) or decreases (sunset). CO(2), COCl(2) and DCAC were the most relevant products detected. Meanwhile CO(2) concentration was insensitive to the branch analysed, COCl(2) or DCAC were not indicating the ability of these compounds to be adsorbed on the composite. An increase of the UV irradiation at total TCE conversion promotes the CO(2) selectivity. The excess of energy arriving to the reactor favours the direct reaction pathway to produce CO(2). The photonic efficiency, calculated as a function of the rate of CO(2) formation, decreases linearly with the solar irradiance up to around 2 mW cm(-2), where it becomes constant. For decontamination systems high TCE conversion is pursuit and then high solar irradiance values are required, in spite of lower photonic efficiency values. The present photocatalyst configuration, with only 17% of the reactor volume filled with the photoactive material, allows total TCE conversion for 150 ppm and 1 L min(-1) in a wide sun irradiance window from 2 to 4 mW cm(-2). The incorporation of water vapour leads to an increase of the CO(2) selectivity keeping the TCE conversion around 90%, although significant amounts of COCl(2) were observed. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this work the effect of doping concentration and depth profile of Cu atoms on the photocatalytic and surface properties of TiO(2) films were studied. TiO(2) films of about 200 nn thickness were deposited on glass substrates on which a thin Cu layer (5 nm) was deposited. The films were annealed during 1 s to 100 degrees C and 400 degrees C, followed by chemical etching of the Cu film. The grazing incidence X-ray fluorescence measurements showed a thermal induced migration of Cu atoms to depths between 7 and 31 nm. The X-ray photoelectron spectroscopy analysis detected the presence of TiO(2), Cu(2)O and Cu(0) phases and an increasing Cu content with the annealing temperature. The change of the surface properties was monitored by the increasing red-shift and absorption of the ultraviolet-visible spectra. Contact angle measurements revealed the formation of a highly hydrophilic surface for the film having a medium Cu concentration. For this sample photocatalytic assays, performed by methylene blue discoloration, show the highest activity. The proposed mechanism of the catalytic effect, taking place on Ti/Cu sites, is supported by results obtained by theoretical calculations. (C) 2010 Elsevier B.V. All rights reserved.