902 resultados para Stability of MPC


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To formulate the water in oil (W/O) emulsion of corn silk (CS) extract and to evaluate its stability at various storage conditions. Methods: Ethanol CS extract was prepared using maceration (cold) technique. A 4 % CS emulsion was prepared using varying concentrations of liquid paraffin, ABIL EM90 and water. The formulations were kept at 40 oC for 28 days and to screen out the less stable formulations. The remaining formulations were further stressed at 50 oC to choose the most stable formulation. The optimized formulation was evaluated for physical characteristics including phase separation, rheology and mean droplet size. The physical stability of the formulation was evaluated by monitoring these parameters over a period of 12 weeks at 8, 25, 40 and 40 oC, and 75 % RH. Results: The chosen formulation showed good resistance to phase separation on centrifugation under all storage conditions. Rheological behavior followed non-Newtonian pseudoplastic pattern at various storage conditions. Mean droplet size of freshly prepared formulation was 2.98 ± 1.32 µm and did not show significant (p < 0.05) changes at normal storage conditions (8 and 25 oC). Conclusion: The findings indicate that the developed CS extract W/O emulsion is stable and therefore may be suitable for topical use on skin as an antioxidant preparation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two VPO materials with fibrillar morphology have been prepared by the aid of electrospinning technique. One is a VPO carbon-supported material (VCF200) with fibrous morphology and very high surface area that is stable under oxidizing conditions up to 350C. The other material is a bulk mixed VPO oxide (VPO500) with fibrous structure obtained after optimizing the calcination of the carbon support in VCF200. Despite it is a bulk oxide material, this material exhibits a high surface area (> 60 m2/g). The redox behavior of both samples was monitored by in situ Raman spectroscopy under oxidation/reduction cycles. For the dehydrated supported sample (VCF200), the pyrophosphate phase (VO)2P2O7 (Raman ~930 cm-1) is detected, which has been described as the active phase (see Figure (a) below). This phase is quite stable since it does not disappear upon subsequent oxidation/reduction cycles. Under reduction conditions at 125C, in consecutive cycles, additional Raman bands appear at ~1090 cm-1 that are characteristic of the αII-VOPO4 phase. On the other hand, the bulk phases show a reversible behavior under redox cycles (Figure (b)). Under reducing conditions, a Raman band appears at ~980 cm-1 (β-VPO phase), whereas under oxidation conditions some segregation to VOx oxides occurs. Nevertheless, this segregation is reversible and the β-VPO phase forms again under reducing conditions. Thus, these results demonstrate that the active VPO phases of these fibrous catalysts are quite stable, and that their structure is reversible under several redox cycles, which make them suitable as oxidation catalysts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of supersonic flow over a 5 degree half-angle cone with injection of gas through a porous section on the body into the boundary layer is studied experimentally. Three injected gases are used: helium, nitrogen, and RC318 (octafluorocyclobutane). Experiments are performed in a Mach 4 Ludwieg tube with nitrogen as the free stream gas. Shaping of the injector section relative to the rest of the body is found to admit a "tuned" injection rate which minimizes the strength of shock waves formed by injection. A high-speed schlieren imaging system with a framing rate of 290 kHz is used to study the instability in the region of flow downstream of injection, referred to as the injection layer. This work provides the first experimental data on the wavelength, convective speed, and frequency of the instability in such a flow. The stability characteristics of the injection layer are found to be very similar to those of a free shear layer. The findings of this work present a new paradigm for future stability analyses of supersonic flow with injection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The search for cleaner processes is one of the major challenges in modern chemical industries. In this context clay derived materials are environmentally friendly catalysts that can be easily tailored to optimize their catalytic activity for a precise reaction of interest. Furthermore, clay-based catalysts can be easily separated, recovered and reused and their versatility, low cost, high catalytic activity and/or selectivity render them very attractive materials. Considering that the stability towards water vapour is a crucial aspect for catalytic performance and reuse of the catalysts, we present a study of the pore structure stability, in the presence of water vapour, of clay catalysts prepared by acid activation with HCl solutions and ion-exchange with sodium, aluminium and iron, from a natural clay collected at Serra de Dentro (Porto Santo Island, Portugal) [1]. For elucidating the influence of water vapour on the pore structure stability, water vapour adsorption- -desorption isotherm, at 298 K, was determined on each sample by gravimetric method as well as n-pentane adsorption−desorption isotherms, at 298 K, which were determined before and after the corresponding water adsorption-desorption isotherms. Prior to the measurements, the samples were outgassed during 5 h at 473 K and the adsorptives were outgassed by repeated freeze–thaw cycles. The results to be reported in the communication allow us to state that, upon contact with water vapour, the less acid activated catalysts suffered some reduction in pore volume reflecting changes in the pore structure, while the more acid activated catalysts and those prepared by ion-exchange presented excellent stability upon one cycle of water vapour adsorption-desorption. The results are corroborated by nitrogen adsorption-desorption isotherms determined, at 77 K, before and after the water and n-pentane adsorption-desorption measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Site-specific management (SSM) is a form of precision agriculture whereby decisions on resource application and agronomic practices are improved to better match soil and crop requirements as they vary in the field. SSM enables the identification of regions (homogeneous management zones) within the area delimited by field boundaries. These subfield regions constitute areas that have similar permanent characteristics. Traditional soil and pasture sampling and the necessary laboratory analysis are time-consuming, labour-intensive and cost prohibitive, not viable from a SSM perspective because it needs a large number of soil and pasture samples in order to achieve a good representation of soil properties, nutrient levels and pasture quality and productivity. The main objective of this work was to evaluate technologies which have potential for monitoring aspects related to spatial and temporal variability of soil nutrients and pasture green and dry matter yield (respectively, GM and DM, in kg/ha) and support to decision making for the farmer. Three types of sensors were evaluated in a 7ha pasture experimental field: an electromagnetic induction sensor (“DUALEM 1S”, which measures the soil apparent electrical conductivity, ECa), an active optical sensor ("OptRx®", which measures the NDVI, “Normalized Difference Vegetation Index”) and a capacitance probe ("GrassMaster II" which estimates plant mass). The results indicate the possibility of using a soil electrical conductivity probe as, probably, the best tool for monitoring not only some of the characteristics of the soil, but also those of the pasture, which could represent an important help in simplifying the process of sampling and support SSM decision making, in precision agriculture projects. On the other hand, the significant and very strong correlations obtained between capacitance and NDVI and between any of these parameters and the pasture productivity shows the potential of these tools for monitoring the evolution of spatial and temporal patterns of the vegetative growth of biodiverse pasture, for identifying different plant species and variability in pasture yield in Alentejo dry-land farming systems. These results are relevant for the selection of an adequate sensing system for a particular application and open new perspectives for other works that would allow the testing, calibration and validation of the sensors in a wider range of pasture production conditions, namely the extraordinary diversity of botanical species that are characteristic of the Mediterranean region at the different periods of the year.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Health issues such as cardiovascular disease are often due to dietary habits. Thus, meat industry needs to reduce salt in their products. However, production of low-salt content dry-cured not affected. The current study evaluated the effect of salt reduction from 6% to 3% in two Portuguese traditional blood dry-cured sausages. Physicochemical and microbiological parameters, biogenic amines content, fatty acids profile, texture profile analyses and sensory panel evaluations were considered. Differences due to salt reduction were noticeable in a faint increase in water activity, which slightly favoured microbial growth, with the highest yeasts numbers found in 6% salt sausages. Total biogenic amines content ranged from 224.72 to 1302.81 mg kg-1 dry matter, with higher amounts, particularly of cadaverine, histamine and tyramine, in low-salt products. Still, histamine significant differences were observed due to salt content. However, texture profile analysis revealed that low-salt products showed lower resilience and cohesiveness, even though no textural changes were observed by the panellists. Nevertheless, low-salt sausages were clearly preferred. Still, taking the safety of these traditional meat products into account, the results obtained for pH, aw and biogenic amines, have shown that a reduction in salt content should be accompanied by complementary safety measures, such as the use of starter cultures to minimise microbiological and chemical risks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT. The aim of this study was to verify the adaptability and stability of soybean cultivars with regards to yield and oil content. Data of soybean yield and oil content were used from experiments set up in six environments in the 2011/12 and 2012/13 crop seasons in the municipalities of Patos de Minas, Uberaba, Lavras, and São Gotardo, Minas Gerais, Brazil, testing 36 commercial soybean cultivars of both conventional and transgenic varieties. The Wricke method and GGE biplot analysis were used to evaluate adaptability and stability of these cultivars. Large variations were observed in grain yield in relation to the different environments studied, showing that these materials are adaptable. The cultivars exhibited significant differences in oil content. The cultivars BRSGO204 (Goiânia) and BRSMG (Garantia) exhibited the greatest average grain yield in the different environments studied, and the cultivar BRSMG 760 SRR had the greatest oil content among the cultivars evaluated. Ecovalence was adopted to identify the most stable cultivars, and the estimates were nearly uniform both for grain yield and oil content, showing a variation of 0.07 and 0.01%, respectively. The GGE biplot was efficient at identifying cultivars with high adaptability and phenotype stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The production of fine wines in the Sub-middle of the São Francisco River Valley, Northeast of Brazil, is relatively recent, about twenty-five years ago. This region presents different characteristics, with a tropical semiarid climate, in a flat landscape. Presenting high annual average temperature, solar radiation and water in abundance for irrigation, it?s possible the scaling the grape harvests for winemaking throughout the year, allowing to obtain until two harvests per year. Several factors may affect the aromatic compounds in wines, such as viticulture practices, climatic conditions, cultivars and winemaking process. This study aimed to evaluate the aromatic stability of Syrah and Petit Verdot tropical wines elaborated in two different periods in the year. The grapes were harvested in the first and second semesters of 2009, in June and November. The wines were elaborated and then, they were bottled and analyzed in triplicate, thirty days and one year after bottling, by gas chromatography with ionization detector flame (GC-FID), to evaluate the profile and the stability of the aroma compounds. Principal component analysis was applied to discriminate between wine samples and to find the compounds responsible by the variability. The results showed that Syrah and Petit Verdot tropical wines presented different responses, for stability of higher alcohols, esters and carboxylic acids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El propósito de esta tesis es presentar una metodología para realizar análisis de la dinámica en pequeña señal y el comportamiento de sistemas de alimentación distribuidos de corriente continua (CC), formados por módulos comerciales. Para ello se hace uso de un método sencillo que indica los márgenes de estabilidad menos conservadores posibles mediante un solo número. Este índice es calculado en cada una de las interfaces que componen el sistema y puede usarse para obtener un índice global que indica la estabilidad del sistema global. De esta manera se posibilita la comparación de sistemas de alimentación distribuidos en términos de robustez. La interconexión de convertidores CC-CC entre ellos y con los filtros EMI necesarios puede originar interacciones no deseadas que dan lugar a la degradación del comportamiento de los convertidores, haciendo el sistema más propenso a inestabilidades. Esta diferencia en el comportamiento se debe a interacciones entre las impedancias de los diversos elementos del sistema. En la mayoría de los casos, los sistemas de alimentación distribuida están formados por módulos comerciales cuya estructura interna es desconocida. Por ello los análisis presentados en esta tesis se basan en medidas de la respuesta en frecuencia del convertidor que pueden realizarse desde los terminales de entrada y salida del mismo. Utilizando las medidas de las impedancias de entrada y salida de los elementos del sistema, se puede construir una función de sensibilidad que proporciona los márgenes de estabilidad de las diferentes interfaces. En esta tesis se utiliza el concepto del valor máximo de la función de sensibilidad (MPC por sus siglas en inglés) para indicar los márgenes de estabilidad como un único número. Una vez que la estabilidad de todas las interfaces del sistema se han evaluado individualmente, los índices obtenidos pueden combinarse para obtener un único número con el que comparar la estabilidad de diferentes sistemas. Igualmente se han analizado las posibles interacciones en la entrada y la salida de los convertidores CC-CC, obteniéndose expresiones analíticas con las que describir en detalle los acoplamientos generados en el sistema. Los estudios analíticos realizados se han validado experimentalmente a lo largo de la tesis. El análisis presentado en esta tesis se culmina con la obtención de un índice que condensa los márgenes de estabilidad menos conservativos. También se demuestra que la robustez del sistema está asegurada si las impedancias utilizadas en la función de sensibilidad se obtienen justamente en la entrada o la salida del subsistema que está siendo analizado. Por otra parte, la tesis presenta un conjunto de parámetros internos asimilados a impedancias, junto con sus expresiones analíticas, que permiten una explicación detallada de las interacciones en el sistema. Dichas expresiones analíticas pueden obtenerse bien mediante las funciones de transferencia analíticas si se conoce la estructura interna, o utilizando medidas en frecuencia o identificación de las mismas a través de la respuesta temporal del convertidor. De acuerdo a las metodologías presentadas en esta tesis se puede predecir la estabilidad y el comportamiento de sistemas compuestos básicamente por convertidores CC-CC y filtros, cuya estructura interna es desconocida. La predicción se basa en un índice que condensa la información de los márgenes de estabilidad y que permite la obtención de un indicador de la estabilidad global de todo el sistema, permitiendo la comparación de la estabilidad de diferentes arquitecturas de sistemas de alimentación distribuidos. ABSTRACT The purpose of this thesis is to present dynamic small-signal stability and performance analysis methodology for dc-distributed systems consisting of commercial power modules. Furthermore, the objective is to introduce simple method to state the least conservative margins for robust stability as a single number. In addition, an index characterizing the overall system stability is obtained, based on which different dc-distributed systems can be compared in terms of robustness. The interconnected systems are prone to impedance-based interactions which might lead to transient-performance degradation or even instability. These systems typically are constructed using commercial converters with unknown internal structure. Therefore, the analysis presented throughout this thesis is based on frequency responses measurable from the input and output terminals. The stability margins are stated utilizing a concept of maximum peak criteria, derived from the behavior of impedance-based sensitivity function that provides a single number to state robust stability. Using this concept, the stability information at every system interface is combined to a meaningful number to state the average robustness of the system. In addition, theoretical formulas are extracted to assess source and load side interactions in order to describe detailed couplings within the system. The presented theoretical analysis methodologies are experimentally validated throughout the thesis. In this thesis, according to the presented analysis, the least conservative stability margins are provided as a single number guaranteeing robustness. It is also shown that within the interconnected system the robust stability is ensured only if the impedance-based minor-loop gain is determined at the very input or output of each subsystem. Moreover, a complete set of impedance-type internal parameters as well as the formulas according to which the interaction sensitivity can be fully explained and analyzed, is provided. The given formulation can be utilized equally either based on measured frequency responses, time-domain identified internal parameters or extracted analytic transfer functions. Based on the analysis methodologies presented in this thesis, the stability and performance of interconnected systems consisting of converters with unknown internal structure, can be predicted. Moreover, the provided concept to assess the least conservative stability margins enables to obtain an index to state the overall robust stability of distributed power architecture and thus to compare different systems in terms of stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High pressure homogenization (HPH) is a non-thermal method, which has been employed to change the activity and stability of biotechnologically relevant enzymes. This work investigated how HPH affects the structural and functional characteristics of a glucose oxidase (GO) from Aspergillus niger. The enzyme was homogenized at 75 and 150 MPa and the effects were evaluated with respect to the enzyme activity, stability, kinetic parameters and molecular structure. The enzyme showed a pH-dependent response to the HPH treatment, with reduction or maintenance of activity at pH 4.5-6.0 and a remarkable activity increase (30-300%) at pH 6.5 in all tested temperatures (15, 50 and 75°C). The enzyme thermal tolerance was reduced due to HPH treatment and the storage for 24 h at high temperatures (50 and 75°C) also caused a reduction of activity. Interestingly, at lower temperatures (15°C) the activity levels were slightly higher than that observed for native enzyme or at least maintained. These effects of HPH treatment on function and stability of GO were further investigated by spectroscopic methods. Both fluorescence and circular dichroism revealed conformational changes in the molecular structure of the enzyme that might be associated with the distinct functional and stability behavior of GO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymeric nanoparticles have been developed for several applications, among them as carrier system of pesticides. However, few studies have investigated the fate of these materials in the environment in relation to colloidal stability and toxicity. In nature, humic substances are the main agents responsible for complexation with metals and organic compounds, as well as responsible for the dynamics of these nanoparticles in aquatic and terrestrial environments. In this context, the evaluation of the influence of aquatic humic substances (AHS) on the colloidal stability and toxicity of polymeric nanoparticles of chitosan/tripolyphosphate with or without paraquat was performed. In this study, the nanoparticles were prepared by the ionic gelation method and characterized by size distribution measurements (DLS and NTA), zeta potential, infrared and fluorescence spectroscopy. Allium cepa genotoxicity studies and ecotoxicity assays with the alga Pseudokirchneriella subcapitata were used to investigate the effect of aquatic humic substances (AHS) on the toxicity of this delivery system. No changes were observed in the physical-chemical stability of the nanoparticles due to the presence of AHS using DLS and NTA techniques. However some evidence of interaction between the nanoparticles and AHS was observed by infrared and fluorescence spectroscopies. The ecotoxicity and genotoxicity assays showed that humic substances can decrease the toxic effects of nanoparticles containing paraquat. These results are interesting because they are important for understanding the interaction of these nanostructured carrier systems with species present in aquatic ecosystems such as humic substances, and in this way, opening new perspectives for studies on the dynamics of these carrier systems in the ecosystem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: This study evaluated the influence of light sources and immersion media on the color stability of a nanofilled composite resin. MATERIAL AND METHODS: Conventional halogen, high-power-density halogen and high-power-density light-emitting diode (LED) units were used. There were 4 immersion media: coffee, tea, Coke® and artificial saliva. A total of 180 specimens (10 mm x 2 mm) were prepared, immersed in artificial saliva for 24 h at 37±1ºC, and had their initial color measured with a spectrophotometer according to the CIELab system. Then, the specimens were immersed in the 4 media during 60 days. Data from the color change and luminosity were collected and subjected to statistical analysis by the Kruskall-Wallis test (p<0.05). For immersion time, the data were subjected to two-way ANOVA test and Fisher's test (p<0.05). RESULTS: High-power-density LED (ΔE=1.91) promoted similar color stability of the composite resin to that of the tested halogen curing units (Jet Lite 4000 plus - ΔE=2.05; XL 3000 - ΔE=2.28). Coffee (ΔE=8.40; ΔL=-5.21) showed the highest influence on color stability of the studied composite resin. CONCLUSION: There was no significant difference in color stability regardless of the light sources, and coffee was the immersion medium that promoted the highest color changes on the tested composite resin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate iris reproduction in the fabrication of ocular prosthesis in order to match the remaining eye is a key factor to mask the loss and achieve an esthetic outcome for anophthalmic patients. This study evaluated the stability of acrylic paints used for replicating iris color in ocular prostheses by the analysis of two factors: the temperature of the acrylic resin polymerization cycle during prosthesis fabrication and the incidence of sun light, which is the main photodegrading agent undermining the longevity of ocular prostheses. An accelerated aging assay was used for both analyses. Specimens simulating the prosthetic iris in the colors blue, yellow, black, brown and green were fabricated, and were submitted to a colorimetric reading before and after undergoing the thermal conditions of acrylic resin polymerization. Next, the specimens were submitted to an artificial accelerated aging assay with ultraviolet radiation A and weekly colorimetric readings during a 3-week period. The color change (??*) values for the four specimens painted with the same color paint were averaged and the resulting values were considered for statistical analysis. Levine's test and Student's t-test were used to analyze the influence of the temperature of the polymerization cycle during prosthesis fabrication on the color stability of each acrylic resin paint. Friedman's test for three dependent samples was used for analysis of color photodegradation as function of time. Significance level was set at 0.05 for all analyses. It was observed that, after the action of the temperature of the polymerization cycle, alteration above clinically acceptable level of ??*> 3.3 was observed only for the yellow color. After the accelerated aging assay, there were statistically significant differences (p<0.05) as a function of time in the green, brown, black and blue colors. Changes were clinically acceptable for the brown and black colors; slightly above the clinically acceptable limit for the green color; and significantly high and impracticable from a clinical standpoint for the blue color. There was no statistically significant differences (p>0.05) for the yellow color, which presented color change only a little above the clinically acceptable limit. In conclusion: 1. Only the yellow color presented alterations above the clinically acceptable levels after the polymerization cycle; 2. After accelerated aging, there was no changes in the yellow color above the clinically acceptable levels; 3. For the green color, degradation was significant and slightly above the clinically acceptable levels; 4. The black, brown and blue colors presented significant alterations as function of time; the alterations of the brown and black colors were within acceptable clinical levels, while the blue color presented a more accentuated degradation over time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ti-base alloys containing significant amounts of silicon have been considered for high temperature structural applications. Thus, information concerning phase stability on the Ti-Si system is fundamental and there are not many investigations covering the phase stability of the Ti(3)Si phase, specially its dependence on oxygen/nitrogen contamination. In this work the stability of this phase has been evaluated through heat-treatment of rapidly solidified Ti-rich Ti-Si alloys at 700 A degrees C and 1000 A degrees C. The rapidly solidified splats presented nanometric scale microstructures which facilitated the attainment of equilibrium conditions. The destabilization of Ti(3)Si due to oxygen/nitrogen contamination has been noted.