975 resultados para SUPERSYMMETRIC POLYNOMIALS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The celebrated Turân inequalities P 2 n(x)-P n-x(x)P n+1(x) ≥ 0, x ε[-1,1], n ≥ 1, where P n(x) denotes the Legendre polynomial of degree n, are extended to inequalities for sums of products of four classical orthogonal polynomials. The proof is based on an extension of the inequalities γ 2 n - γ n-1γ n+1 ≥ 0, n ≥ 1, which hold for the Maclaurin coefficients of the real entire function ψ in the Laguerre-Pölya class, ψ(x) = ∑ ∞ n=0 γ nx n / n!. ©1998 American Mathematical Society.
Resumo:
We discuss signals for CP violation in μ + μ - → Τ̃ i - Τ̃ j +, where i, j = 1, 2 label the two scalar Τ mass eigenstates. We assume that these reactions can proceed through the production and decay of the heavy neutral Higgs bosons present in supersymmetric models. CP violation in the Higgs sector can be probed through a rate asymmetry even with unpolarized beams, while the CP-odd phase associated with the Τ̃ mass matrix can be probed only if the polarization of at least one beam can be varied. These asymmetries might be O (1).
Efeitos Ambientais sobre Ganho de Peso no Período do Nascimento ao Desmame em Bovinos da Raça Nelore
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The production of third generation leptoquarks can give rise to multilepton events accompanied by jets and missing ET. In this work we study the signals of these leptoquarks at the CERN Large Hadron Collider and compare them with the ones expected in supersymmetric models. ©1998 The American Physical Society.
Resumo:
We study chargino pair production at LEP II in supersymmetric models with spontaneously broken R-parity. We perform signal and background analyses, showing that a large region of the parameter space of these models can be probed through chargino searches at LEP II. In particular, we determine the attainable limits on the chargino mass as a function of the magnitude of the effective bilinear R-parity violation parameter ∈, demonstrating that LEP II is able to unravel the existence of charginos with masses almost up to their kinematical limit even in the case of R-parity violation. This requires the study of several final state topologies since the usual MSSM chargino signature is recovered as ∈ → 0. Moreover, for sufficiently large ∈ values, for which the chargino decay mode χ ± → τ ± J dominates, we find through a dedicated Monte Carlo analysis that the χ ± mass bounds are again very close to the kinematic limit. Our results establish the robustness of the chargino mass limit, in the sense that it is basically model-independent. They also show that LEP II can establish the existence of spontaneous R-parity violation in a large region of parameter space should charginos be produced. © 1999 Elsevier Science B.V.
Resumo:
We discuss perturbative and non-perturbative strong-interaction effects in the pair production of stop squarks (t̃1) at e+e- colliders. Events with an additional hard gluon allow to detect or exclude t̃1t̃*1 production even in scenarios with very small mass splitting between ti and an invisible lightest supersymmetric particle (LSP). Such events can also help to establish that t̃1 transforms as a triplet under SU(3)C. We also carefully study non-perturbative t̃1 fragmentation, which is currently not well understood: not only is the t̃1 fragmentation function not known very well, but also there are ambiguities in the algorithm employed to model fragmentation. We present numerical results both for CERN LEP-183 and for a proposed future e+e- collider operating at center-of-mass energy s1/2 = 500 GeV.
Resumo:
Using the manifestly spacetime-supersymmetric version of open superstring field theory, we construct the free action for the first massive states of the open superstring compactified to four dimensions. This action is in N = 1 D = 4 superspace and describes a massive spin-2 multiplet coupled to two massive scalar multiplets. © 1999 Published by Elsevier Science B.V. All rights reserved.
Resumo:
A branch and bound algorithm is proposed to solve the H2-norm model reduction problem for continuous-time linear systems, with conditions assuring convergence to the global optimum in finite time. The lower and upper bounds used in the optimization procedure are obtained through Linear Matrix Inequalities formulations. Examples illustrate the results.
Resumo:
We consider interpolatory quadrature rules with nodes and weights satisfying symmetric properties in terms of the division operator. Information concerning these quadrature rules is obtained using a transformation that exists between these rules and classical symmetric interpolatory quadrature rules. In particular, we study those interpolatory quadrature rules with two fixed nodes. We obtain specific examples of such quadrature rules.
Resumo:
The Variational Method is applied within the context of Supersymmetric Quantum Mechanics to provide information about the energy and eigenfunction of the lowest levels of a Hamiltonian. The approach is illustrated by the case of the Morse potential applied to several diatomic molecules and the results are compared with stabilished results. (C) 2000 Elsevier Science B.V.
Resumo:
We analyze the average performance of a general class of learning algorithms for the nondeterministic polynomial time complete problem of rule extraction by a binary perceptron. The examples are generated by a rule implemented by a teacher network of similar architecture. A variational approach is used in trying to identify the potential energy that leads to the largest generalization in the thermodynamic limit. We restrict our search to algorithms that always satisfy the binary constraints. A replica symmetric ansatz leads to a learning algorithm which presents a phase transition in violation of an information theoretical bound. Stability analysis shows that this is due to a failure of the replica symmetric ansatz and the first step of replica symmetry breaking (RSB) is studied. The variational method does not determine a unique potential but it allows construction of a class with a unique minimum within each first order valley. Members of this class improve on the performance of Gibbs algorithm but fail to reach the Bayesian limit in the low generalization phase. They even fail to reach the performance of the best binary, an optimal clipping of the barycenter of version space. We find a trade-off between a good low performance and early onset of perfect generalization. Although the RSB may be locally stable we discuss the possibility that it fails to be the correct saddle point globally. ©2000 The American Physical Society.
Resumo:
The problem of existence and uniqueness of polynomial solutions of the Lamé differential equation A(x)y″ + 2B(x)y′ + C(x)y = 0, where A(x),B(x) and C(x) are polynomials of degree p + 1,p and p - 1, is under discussion. We concentrate on the case when A(x) has only real zeros aj and, in contrast to a classical result of Heine and Stieltjes which concerns the case of positive coefficients rj in the partial fraction decomposition B(x)/A(x) = ∑j p=0 rj/(x - aj), we allow the presence of both positive and negative coefficients rj. The corresponding electrostatic interpretation of the zeros of the solution y(x) as points of equilibrium in an electrostatic field generated by charges rj at aj is given. As an application we prove that the zeros of the Gegenbauer-Laurent polynomials are the points of unique equilibrium in a field generated by two positive and two negative charges. © 2000 American Mathematical Society.
Resumo:
We present angular basis functions for the Schrödinger equation of two-electron systems in hyperspherical coordinates. By using the hyperspherical adiabatic approach, the wave functions of two-electron systems are expanded in analytical functions, which generalizes the Jacobi polynomials. We show that these functions, obtained by selecting the diagonal terms of the angular equation, allow efficient diagonalization of the Hamiltonian for all values of the hyperspherical radius. The method is applied to the determination of the 1S e energy levels of the Li + and we show that the precision can be improved in a systematic and controllable way. ©2000 The American Physical Society.