812 resultados para Reputation for Toughness


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Doped zirconia has been used in electronic applications in the cubic crystalline phase. Ceria-stabilized tetragonal zirconia presents high toughness and can also be applied as solid electrolytes. The tetragonal phase of zirconia can be stabilized at room temperature with ceria in a broad range of composition. However, CeO2-ZrO2 has low sinterability. so it is important to investigate the effect of sintering dopants. In this study the effect of iron, copper. manganese and nickel was investigated. The dopants such as iron and copper lowered the sintering temperature from 1600 degreesC down to 1450 degreesC, with a percentage of tetragonal phase retained at room temperature higher than 98% and also with an increase of the electrical conductivity. The electrical conductivity was measured using impedance spectroscopy. The grain boundary contribution was determined and the activation energy associated with the ionic conduction was 1.04 eV. The dopants can also promote a grain boundary cleanliness verified by blocking effect measurement. (C) 2001 Elsevier B.V. Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, in situ alpha-SiAlON-SiC ceramic composites were obtained,by, liquid phase sintering, using SiC as reinforcement. Different beta-SiC powder contents (0-20 wt.%), were added to Si3N4-AlN-RE2O3. powder mixtures, and compacted by cold isostatic pressing. The samples were sintered at 1950 degrees C for 1 h, in N-2 atmosphere. Sintered: samples were characterized by relative density, weight loss, X-ray diffraction and scanning electron microscopy. Furthermore, mechanical properties such as hardness and fracture toughness were determined by Vickers indentation method. Lattice parameters of the alpha' phase did not considerably change with increase of SiC content. However, morphology, average grain size and aspect ratio of the alpha' phase were considerably changed with increase of the SiC content. These behavior influences significantly the mechanical properties of this hard ceramic composite. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the use of a natural yttrium oxide and rare earth oxide solid solution (CRE2O3) as stabilizers of the alpha-Si3N4 phase to form alpha-SiAlON has been investigated. This oxide mix is produced at FAENQUIL-DEMAR, at a cost of only 20% of pure commercial Y2O3. Two alpha-SiAlONs using pure Y2O3 or CRE2O3 have been prepared, using mixes of 20% by volume of a molar fraction of 9:1 of AlN to Y2O3 or AlN to CRE2O3, respectively, with 80% alpha-Si3N4. Samples were gas pressure-sintered at 1900 degreesC, under 1.5 MPa of N-2 for 60 min. Both compositions yielded alpha-SiAlON ceramics with high relative densities (98% t.d.), hardness of 18 GPa and fracture toughness of 5 Mpa m(1/2), with homogeneous microstructures composed of elongated alpha-SiAlON grains with aspect ratios of 5. It is concluded that the mixed rare earth concentrate (CRE2O3) can be used to produce alpha-SiAlON ceramics with similar microstructures and mechanical properties of alpha-SiAlON ceramics fabricated using pure Y2O3, but with the advantage of its lower production cost. (C) 2004 Elsevier B.V All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composites of aerosil fumed silica and tetraethoxysilane-derived sonogel were prepared by changing the aerosil content between 0 and 30wt% with respect to the silica content in the original tetraethoxysilane (TEOS). The structural characteristics were studied by density and Vickers microhardness measurements and analyzed by means of small-angle X-ray scattering (SAXS). The structure of the composite aerosil/TEOS-derived sonogel can be described as inclusions of the aerosil particles embedded in the matrix of the TEOS-derived sonogel, forming an aerosil/matrix interfacial surface inside the composite. The weakening of the bonding of aerosil/matrix interface, as suggested by the reported decrease in microhardness, increases the fracture toughness of the composite. The additive effect of the aerosil particles on the structure of the sonogel accounts for the increase of the bulk density and reduction of the specific surface of the composite. Some internal structure associated with the microclusters making up the sonogels is apparent from systematic deviations from Porod's law found in the system with small aerosil contents. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymer alloys have been used as an alternative to obtain polymeric materials with unique physical properties. Generally, the polymer mixture is incompatible, which makes it necessary to use a compatibilizer to improve the interracial adhesion. Nylon 6 (PA6) is an attractive polymer to use in engineering applications, but it has processing instability and relatively low notched impact strength. In this study, the acrylonitrile-butadiene-styrene (ABS) triblock copolymer was used as an impact modifier for PA6. Poly(methyl methacrylate-co-maleic anyhydride) (MMA-MA) and poly(methyl methacrylate-co-maleic methacrylate) (MMA-GMA) were used as compatibilizers for this blend. The morphology and impact strength of the blends were evaluated as a function of blend composition and the presence of compatibilizers. The blends compatibilized with maleated copolymer exhibited an impact strength up to 800 J/m and a morphology with ABS domains more efi8ciently dispersed. Moderate amounts of MA functionality in the compatibilizer (∼5%) and small amounts of compatibilizer in the blend (∼5%) appear sufficient to improve the impact properties and ABS dispersion. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The instrumentation applied to the Charpy test machine allows the accompaniment of the specimen answer front the impact load, in form of a sign characteristically dynamic representative of the deformation process and it fractures of material tested. The main advantages of the rehearsal conventional Charpy: low cost, manufacturing sample facilities and simple handle the machine. With the instrumentation, the number of information regarding the process of fracture of the specimen increases. In this work discusses the influence of the hammer geometry in determination of the force during the process of specimen fracture submitted to the instrumented impact test Charpy-V. The purpose is obtaining a hammer, in conformity with Norma ISO 14.556, with great sensibility to register the force during the impact. Two geometries different from hammers were instrumented and rehearsed with material of low tenacity, in this case the steel ABNT 4140 in the condition of having normalized. It could be proven as larger the sensibility of the hammer, adult will be the effects of the shock waves in the strain gages of the transducer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ductile-brittle transition temperatures were determined for compatibilized nylon 6/acrylonitrile-butadiene-styrene (PA6/ABS) copolymer blends. The compatibilizers used for those blends were methyl methacrylate-co-maleic anhydride (MMA-MAH) and MMA-co-glycidyl methacrylate (MMA-GMA). The ductile-brittle transition temperatures were found to be lower for blends compatibilized through maleate modified acrylic polymers. At room temperature, the PA6/ABS binary blend was essentially brittle whereas the ternary blends with MMA-MAH compatibilizer were supertough and showed a ductile-brittle transition temperature at -10°C. The blends compatibilized with maleated copolymer exhibited impact strengths of up to 800 J/m. However, the blends compatibilized with MMA-GMA showed poor toughness at room temperature and failed in a brittle manner at subambient temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nylon6 is an attractive polymer for engineering applications because it has reactive functionality through amine and carboxyl end groups that are capable of reacting. For this reason, it has been used a lot in polymeric blends. Blends of nylon6/ABS (acrylonitrile-butadiene-styrene) were produced using glycidyl methacrylate-methyl methacrylate (GMA-MMA) copolymers as compatibilizer. The binary blends were immiscible and exhibited poor mechanical properties that stemmed from the unfavorable interactions among their molecular segments. This produced an unstable coarse phase morphology and weak interfaces between the phases in the solid state. The presence of the copolymer in the blends clearly led to a more efficient dispersion of the ABS phase and consequently optimized Izod impact properties. However, the compatibilized blend showed poor toughness at room temperature and failed in a brittle manner at subambient temperatures. © 2005 Springer Science + Business Media, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relationship between the dielectric properties (dielectric constant, ε′, and loss factor, ε; activation energy, E a) and the ratio of epoxy resin (OG) to hardener of the epoxy resin thermosetting polymers was investigated. The amplitude of the ε″ peak decreases with increasing OG content until about 73 wt.% and slightly increases at higher OG content. The temperature of the position of the ε″ peak increases with the increasing of OG content, reaching maximum values for compositions in the range of 67 and 73 wt.%, and then it decreases sharply at higher OG content. The activation energy obtained from dielectric relaxation increased with increasing wt.% OG up to around 70 wt.%. Further increase in concentration of OG up to 83 wt.% reduced E a. The curves of tensile modulus and fracture toughness mechanical properties as a function of OG content presented a similar behavior. ©2006 Sociedade Brasileira de Química.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relationship between the heat of polymerization (ΔH) and activation energy (Ea) parameters, obtained by differential scanning calorimetry (DSC) and the ratio of epoxy resin to hardener of the thermosetting materials based on an organic-inorganic hybrid epoxy resin (OG) was investigated. Activation energy (Ea) and heat of polymerization (ΔH) increased with an increasing OG content, up to 70 wt%. Further increase in OG content to 80wt% reduced Ea and ΔH. Dynamic mechanical analysis indicates that the maximum cross-link density is obtained at 83 wt% OG, whereas fracture toughness and tensile modulus mechanical properties are maximized at 70 wt% OG. ©2006 Sociedade Brasileira de Química.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The α-SiAlON ceramic cutting tool insert is developed. Silicon nitride and additives powders are pressed and sintered in the form of cutting tool inserts at temperature of 1900 °C. The physics and mechanical properties of the inserts like green density, weight loss, relative density, hardness and fracture toughness are evaluated. Machining studies are conducted on grey cast iron workpiece to evaluate the performance of α-SiAlON ceramic cutting tool. In the paper the cutting tool used in higher speed showed an improvement in the tribological interaction between the cutting tools and the grey cast iron workpiece resulted in a significant reduction of flank wear and roughness, because of better accommodation and the presence of the graphite in gray cast iron. The above results are discussed in terms of their affect at machining parameters on gray cast iron.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Automotive parts manufacture by machining process using silicon nitride-based ceramic tool development in Brazil already is a reality. Si 3N4-based ceramic cutting tools offer a high productivity due to their excellent hot hardness, which allows high cutting speeds. Under such conditions the cutting tool must be resistant to a combination of mechanical, thermal and chemical attacks. Silicon nitride based ceramic materials constitute a mature technology with a very broad base of current and potential applications. The best opportunities for Si3N 4-based ceramics include ballistic armor, composite automotive brakes, diesel particulate filters, joint replacement products and others. The goal of this work was to show latter advance in silicon nitride manufacture and its recent evolution on machining process of gray cast iron, compacted graphite iron and Ti-6Al-4V. Materials characterization and machining tests were analyzed by X-Ray Diffraction, Scanning Electron Microscopy, Vickers hardness and toughness fracture and technical norm. In recent works the authors has been proved to advance in microstructural, mechanical and physic properties control. These facts prove that silicon nitride-based ceramic has enough resistance to withstand the impacts inherent to the machining of gray cast iron (CI), compacted graphite iron (CGI) and Ti-6Al-4V (6-4). Copyright © 2008 SAE International.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Advanced ceramic materials constitute a mature technology with a very broad base of current and potential applications and a growing list of material compositions. Within the advanced ceramics category, silicon nitride based ceramics are wear-resistant, corrosion-resistant and lightweight materials, and are superior to many materials with regard to stability in high-temperature environments. Because of this combination the silicon nitride ceramics have an especially high potential to resolve a wide number of machining problems in the industries. Presently the Si3N4 ceramic cutting tool inserts are developed using additives powders that are pressed and sintered in the form of a cutting tool insert at a temperature of 1850 °C using pressureless sintering. The microstructure of the material was observed and analyzed using XRD, SEM, and the mechanical response of this array microstructure was characterized for hardness Vickers and fracture toughness. The results show that Si3N4/20 wt.% (AlN and Y 2O3) gives the best balance between hardness Vickers and fracture toughness. The Si3N4/15 wt.% (AlN and Y 2O3) composition allows the production of a very fine-grained microstructure with low decreasing of the fracture toughness and increased hardness Vickers. These ceramic cutting tools present adequate characteristics for future application on dry machining. © (2010) Trans Tech Publications.