972 resultados para Relativistic dissipative hydrodynamics
Resumo:
We discuss the basic hydrodynamics that determines the density structure of the disks around hot stars. Observational evidence supports the idea that these disks are Keplerian (rotationally supported) gaseous disks. A popular scenario in the literature, which naturally leads to the formation of Keplerian disks, is the viscous decretion model. According to this scenario, the disks are hydrostatically supported in the vertical direction, while the radial structure is governed by the viscous transport. This suggests that the temperature is one primary factor that governs the disk density structure. In a previous study we demonstrated, using three-dimensional non-LTE Monte Carlo simulations, that viscous Keplerian disks can be highly nonisothermal. In this paper we build on our previous work and solve the full problem of the steady state nonisothermal viscous diffusion and vertical hydrostatic equilibrium. We find that the self-consistent solution departs significantly from the analytic isothermal density, with potentially large effects on the emergent spectrum. This implies that nonisothermal disk models must be used for a detailed modeling of Be star disks.
Resumo:
The ejection of the gas out of the disc in late-type galaxies is related to star formation and is due mainly to Type II supernovae. In this paper, we studied in detail the development of the Galactic fountains in order to understand their dynamical evolution and their influence on the redistribution of the freshly delivered metals over the disc. To this aim, we performed a number of 3D hydrodynamical radiative cooling simulations of the gas in the Milky Way where the whole Galaxy structure, the Galactic differential rotation and the supernova explosions generated by a single OB association are considered. A typical fountain powered by 100 Type II supernovae may eject material up to similar to 2 kpc which than collapses back mostly in the form of dense, cold clouds and filaments. The majority of the gas lifted up by the fountains falls back on the disc remaining within a radial distance Delta R = 0.5 kpc from the place where the fountain originated. This localized circulation of disc gas does not influence the radial chemical gradients on large scale, as required by the chemical models of the Milky Way which reproduce the metallicity distribution without invoking large fluxes of metals. Simulations of multiple fountains fuelled by Type II supernovae of different OB associations will be presented in a companion paper.
Resumo:
In this paper, we present multiband optical polarimetric observations of the very-high energy blazar PKS 2155-304 made simultaneously with a HESS/Fermi high-energy campaign in 2008, when the source was found to be in a low state. The intense daily coverage of the data set allowed us to study in detail the temporal evolution of the emission, and we found that the particle acceleration time-scales are decoupled from the changes in the polarimetric properties of the source. We present a model in which the optical polarimetric emission originates at the polarized mm-wave core and propose an explanation for the lack of correlation between the photometric and polarimetric fluxes. The optical emission is consistent with an inhomogeneous synchrotron source in which the large-scale field is locally organized by a shock in which particle acceleration takes place. Finally, we use these optical polarimetric observations of PKS 2155-304 at a low state to propose an origin for the quiescent gamma-ray flux of the object, in an attempt to provide clues for the source of its recently established persistent TeV emission.
Resumo:
The subject of this paper is the secular behaviour of a pair of planets evolving under dissipative forces. In particular, we investigate the case when dissipative forces affect the planetary semimajor axes and the planets move inwards/outwards the central star, in a process known as planet migration. To perform this investigation, we introduce fundamental concepts of conservative and dissipative dynamics of the three-body problem. Based on these concepts, we develop a qualitative model of the secular evolution of the migrating planetary pair. Our approach is based on the analysis of the energy and the orbital angular momentum exchange between the two-planet system and an external medium; thus no specific kind of dissipative forces is invoked. We show that, under the assumption that dissipation is weak and slow, the evolutionary routes of the migrating planets are traced by the Mode I and Mode II stationary solutions of the conservative secular problem. The ultimate convergence and the evolution of the system along one of these secular modes of motion are determined uniquely by the condition that the dissipation rate is sufficiently smaller than the proper secular frequency of the system. We show that it is possible to reassemble the starting configurations and the migration history of the systems on the basis of their final states and consequently to constrain the parameters of the physical processes involved.
Resumo:
We present here new results of two-dimensional hydrodynamical simulations of the eruptive events of the 1840s (the great) and the 1890s (the minor) eruptions suffered by the massive star eta Carinae (Car). The two bipolar nebulae commonly known as the Homunculus and the little Homunculus (LH) were formed from the interaction of these eruptive events with the underlying stellar wind. We assume here an interacting, non-spherical multiple-phase wind scenario to explain the shape and the kinematics of both Homunculi, but adopt a more realistic parametrization of the phases of the wind. During the 1890s eruptive event, the outflow speed decreased for a short period of time. This fact suggests that the LH is formed when the eruption ends, from the impact of the post-outburst eta Car wind (that follows the 1890s event) with the eruptive flow (rather than by the collision of the eruptive flow with the pre-outburst wind, as claimed in previous models; Gonzalez et al.). Our simulations reproduce quite well the shape and the observed expansion speed of the large Homunculus. The LH (which is embedded within the large Homunculus) becomes Rayleigh-Taylor unstable and develop filamentary structures that resemble the spatial features observed in the polar caps. In addition, we find that the interior cavity between the two Homunculi is partially filled by material that is expelled during the decades following the great eruption. This result may be connected with the observed double-shell structure in the polar lobes of the eta Car nebula. Finally, as in previous work, we find the formation of tenuous, equatorial, high-speed features that seem to be related to the observed equatorial skirt of eta Car.
Resumo:
Various authors have suggested that the gamma-ray burst (GRB) central engine is a rapidly rotating, strongly magnetized, (similar to 10(15)-10(16) G) compact object. The strong magnetic field can accelerate and collimate the relativistic flow and the rotation of the compact object can be the energy source of the GRB. The major problem in this scenario is the difficulty of finding an astrophysical mechanism for obtaining such intense fields. Whereas, in principle, a neutron star could maintain such strong fields, it is difficult to justify a scenario for their creation. If the compact object is a black hole, the problem is more difficult since, according to general relativity it has ""no hair"" (i.e., no magnetic field). Schuster, Blackett, Pauli, and others have suggested that a rotating neutral body can create a magnetic field by non-minimal gravitational-electromagnetic coupling (NMGEC). The Schuster-Blackett form of NMGEC was obtained from the Mikhail and Wanas`s tetrad theory of gravitation (MW). We call the general theory NMGEC-MW. We investigate here the possible origin of the intense magnetic fields similar to 10(15)-10(16) G in GRBs by NMGEC-MW. Whereas these fields are difficult to explain astrophysically, we find that they are easily explained by NMGEC-MW. It not only explains the origin of the similar to 10(15)-10(16) G fields when the compact object is a neutron star, but also when it is a black hole.
Resumo:
The ejection of gas out of the disc in late-type galaxies is related to star formation and is mainly due to the explosion of Type II supernovae (SN II). In a previous paper, we considered the evolution of a single Galactic fountain, that is, a fountain powered by a single SN cluster. Using three-dimensional hydrodynamical simulations, we studied in detail the fountain flow and its dependence with several factors, such as the Galactic rotation, the distance to the Galactic centre and the presence of a hot gaseous halo. As a natural followup, this paper investigates the dynamical evolution of multiple generations of fountains generated by similar to 100 OB associations. We have considered the observed size-frequency distribution of young stellar clusters within the Galaxy in order to appropriately fuel the multiple fountains in our simulations. Most of the results of the previous paper have been confirmed, like for example the formation of intermediate velocity clouds above the disc by the multiple fountains. Also, this work confirms the localized nature of the fountain flows: the freshly ejected metals tend to fall back close to the same Galactocentric region where they are delivered. Therefore, the fountains do not change significantly the radial profile of the disc chemical abundance. The multiple fountain simulations also allowed us to consistently calculate the feedback of the star formation on the halo gas. We found that the hot gas gains about 10 per cent of all the SN II energy produced in the disc. Thus, the SN feedback more than compensate for the halo radiative losses and allow for a quasi steady-state disc-halo circulation to exist. Finally, we have also considered the possibility of mass infall from the intergalactic medium and its interaction with the clouds that are formed by the fountains. Though our simulations are not suitable to reproduce the slow rotational pattern that is typically observed in the haloes around the disc galaxies, they indicate that the presence of an external gas infall may help to slow down the rotation of the gas in the clouds and thus the amount of angular momentum that they transfer to the coronal gas, as previously suggested in the literature.
Resumo:
We have analyzed pair production in the innermost region of a two-temperature external soft photon Comptonized accretion disk. We have shown that, if the viscosity parameter is greater than a critical value alpha(c), the solution to the disk equation is double valued: one, advection dominated, and the other, radiation dominated. When alpha <= alpha(c), the accretion rate has to satisfy (m) over dot(1) <= (m) over dot <= (m) over dot(c) in order to have two steady-state solutions. It is shown that these critical parameters (m) over dot(1), (m) over dot(c) are functions of r, alpha, and theta(e), and alpha(c) is a function of r and theta(e). Depending on the combination of the parameters, the advection-dominated solution may not be physically consistent. It is also shown that the electronic temperature is maximum at the onset of the thermal instability, from which results this inner region. These solutions are stable against perturbations in the electron temperature and in the density of pairs.
Resumo:
Recently, de Roany and Pacheco (Gen Relativ Gravit, doi:10.1007/s10714-010-1069-2) performed a Newtonian analysis on the evolution of perturbations for a class of relativistic cosmological models with Creation of Cold Dark Matter (CCDM) proposed by the present authors (Lima et al. in JCAP 1011:027, 2010). In this note we demonstrate that the basic equations adopted in their work do not recover the specific (unperturbed) CCDM model. Unlike to what happens in the original CCDM cosmology, their basic conclusions refer to a decelerating cosmological model in which there is no transition from a decelerating to an accelerating regime as required by SNe type Ia and complementary observations.
Resumo:
We study compressible magnetohydrodynamic turbulence, which holds the key to many astrophysical processes, including star formation and cosmic-ray propagation. To account for the variations of the magnetic field in the strongly turbulent fluid, we use wavelet decomposition of the turbulent velocity field into Alfven, slow, and fast modes, which presents an extension of the Cho & Lazarian decomposition approach based on Fourier transforms. The wavelets allow us to follow the variations of the local direction of the magnetic field and therefore improve the quality of the decomposition compared to the Fourier transforms, which are done in the mean field reference frame. For each resulting component, we calculate the spectra and two-point statistics such as longitudinal and transverse structure functions as well as higher order intermittency statistics. In addition, we perform a Helmholtz-Hodge decomposition of the velocity field into incompressible and compressible parts and analyze these components. We find that the turbulence intermittency is different for different components, and we show that the intermittency statistics depend on whether the phenomenon was studied in the global reference frame related to the mean magnetic field or in the frame defined by the local magnetic field. The dependencies of the measures we obtained are different for different components of the velocity; for instance, we show that while the Alfven mode intermittency changes marginally with the Mach number, the intermittency of the fast mode is substantially affected by the change.
Resumo:
The aim of this study was to determine the short-term environmental changes caused by the simultaneous passage of a high energy event on two sandy beaches with different morphodynamic states and their influence on the richness, abundance and distribution of the benthic macrofauna. Two microtidal exposed sandy beaches with contrasting morphodynamics were simultaneously sampled before, during and after the passage of two cold fronts in Santa Catarina. The reflective beach showed a higher susceptibility to the increase in wave energy produced by the passage of cold fronts and was characterized by rapid and intense erosive processes in addition to a capacity for rapid restoration of the beach profile. As regards the dissipative beach, erosive processes operated more slowly and progressively, and it was characterized further by a reduced capacity for the recovery of its sub-aerial profile. Although the intensity of the environmental changes was distinct as between the morphodynamic extremes, changes in the composition, richness and abundance of macrobenthos induced by cold fronts were not evident for either of the beaches studied. On the other hand, alterations in the distribution pattern of the macrofauna were observed on the two beaches and were related to variations in sea level, position of the swash zone and moisture gradient, suggesting that short-term accommodations in the spatial structure of the macrobenthos occur in response to changes in environmental conditions in accordance with the temporal dynamics characteristic of each morphodynamic state.
Resumo:
In this paper we consider a dissipative damped wave equation with nonautonomous damping of the form u(tt) + beta(t)u(t) - Delta u + f(u) (1) in a bounded smooth domain Omega subset of R(n) with Dirichlet boundary conditions, where f is a dissipative smooth nonlinearity and the damping beta : R -> (0, infinity) is a suitable function. We prove, if (1) has finitely many equilibria, that all global bounded solutions of (1) are backwards and forwards asymptotic to equilibria. Thus, we give a class of examples of nonautonomous evolution processes for which the structure of the pullback attractors is well understood. That complements the results of [Carvalho & Langa, 2009] on characterization of attractors, where it was shown that a small nonautonomous perturbation of an autonomous gradient-like evolution process is also gradient-like. Note that the evolution process associated to (1) is not a small nonautonomous perturbation of any autonomous gradient-like evolution processes. Moreover, we are also able to prove that the pullback attractor for (1) is also a forwards attractor and that the rate of attraction is exponential.
Resumo:
This paper is concerned with the existence of pullback attractors for evolution processes. Our aim is to provide results that extend the following results for autonomous evolution processes (semigroups) (i) An autonomous evolution process which is bounded, dissipative and asymptotically compact has a global attractor. (ii) An autonomous evolution process which is bounded, point dissipative and asymptotically compact has a global attractor. The extension of such results requires the introduction of new concepts and brings up some important differences between the asymptotic properties of autonomous and non-autonomous evolution processes. An application to damped wave problem with non-autonomous damping is considered. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we study the behavior of the solutions of nonlinear parabolic problems posed in a domain that degenerates into a line segment (thin domain) which has an oscillating boundary. We combine methods from linear homogenization theory for reticulated structures and from the theory on nonlinear dynamics of dissipative systems to obtain the limit problem for the elliptic and parabolic problems and analyze the convergence properties of the solutions and attractors of the evolutionary equations. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we conclude the analysis started in [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz, Dynamics in dumbbell domains I. Continuity of the set of equilibria, J. Differential Equations 231 (2006) 551-597] and continued in [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz, Dynamics in dumbbell domains II. The limiting problem, J. Differential Equations 247 (1) (2009) 174-202 (this issue)] concerning the behavior of the asymptotic dynamics of a dissipative reaction-diffusion equation in a dumbbell domain as the channel shrinks to a line segment. In [J.M. Arrieta, AN Carvalho. G. Lozada-Cruz, Dynamics in dumbbell domains I. Continuity of the set of equilibria, J. Differential Equations 231 (2006) 551-597], we have established an appropriate functional analytic framework to address this problem and we have shown the continuity of the set of equilibria. In [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz. Dynamics in dumbbell domains II. The limiting problem, J. Differential Equations 247 (1) (2009) 174-202 (this issue)], we have analyzed the behavior of the limiting problem. In this paper we show that the attractors are Upper semicontinuous and, moreover, if all equilibria of the limiting problem are hyperbolic, then they are lower semicontinuous and therefore, continuous. The continuity is obtained in L(p) and H(1) norms. (C) 2008 Elsevier Inc. All rights reserved.