983 resultados para Precursor Cells, B-Lymphoid
Resumo:
CD40-1igand (CD40-L), a member of the tumour necrosis family of transmembrane glycoproteins, is rapidly and transiently expressed on the surface of recently activated CD4+ T cells. CD40 is expressed by B cells, monocytes and dendritic cells. Interactions between CD40-L and CD40 induce B cell proliferation, differentiation, immunoglobulin production and isotype switching as well as monocyte activation and dendritic cell differentiation. Since the rheumatoid synovium is characterized by T cell activation, B cell immunoglobulin production, monocyte cytokine production and dendritic cell differentiation, the expression and function of CD40-L in RA was examined. RA synovial fluid (SF) T ceils expressed CD40-L mRNA, as well as low level cell surface CD40-L. A subset of CD4+ RA synovial fluid T cells could express cell surface CD40-L within 15 rain of in vitro activation even in the presence of cycloheximide. CD40-L expressed by RA SF T cells was functional, since RA SF T cells, but not normal PB T cells, stimulated CD40-L dependent B cell immunoglobulin production in the absence of in vitro T cell activation. These data indicate that SF T cells express functionally significant levels of surface CD40-L, and have the potential for rapid upregulation of surface expression from preformed CD40-L stores. Thus, CD40-L is likely to play a central role in the perpetuation of RA by induction of Ig synthesis, cytokine production and dendritic cell differentiation. Moreover, the data provide important evidence of recent activation of RA synovial T cells. Of importance, blockade of CD40-L may prove highly effective as a disease modifying therapy for RA.
Resumo:
Background: p63 gene is a p53 homologue that encodes proteins with transactivation, DNA-binding and tetramerisation domains. The isoforms TAp63 and TAp73 transactivate p53 target genes and induce apoptosis, whereas the isoforms Delta Np63 and Delta Np73 lack transactivation and might have dominant-negative effects in p53 family members. p63 is expressed in germinal centre lymphocytes and can be related to the development of the lymphoma, but the prognostic significance of its expression in the survival of patients with diffuse large B-cell lymphoma (DLBCL) remains unclear. Aims: To determine whether quantitative immunohistochemical (IHC) analysis of p63 protein expression correlates with CD10 antigen, Bcl-6 antigen and IRF4 antigen expression and to determine whether p63 is a surrogate predictor of overall survival in high-intermediate and high risk DLBCL populations. Methods: CD10, Bcl-6 and IRF4 expression were retrospectively evaluated by IHC in 73 samples of high intermediate and high risk DLBCL and were used to divide the lymphomas into subgroups of germinal centre B-celllike (GCB) and activate B-cell-like (ABC) DLBCL. Similarly, p63 expression was evaluated by IHC and the results were compared with subgroups of DLBCL origin and with the survival rates for these patients. Results: p63 was expressed in more than 50% of malignant cells in 11 patients and did not show correlation with subgroups of GCB-like DLBCL or ABC-like DLBCL, but p63(+) patients had better disease-free survival (DFS) than those who were negative (p = 0.01). Conclusions: p63(+) high-intermediate and high risk DLBCL patients have a better DFS than negative cases.
Resumo:
A line of FVB (H-2(q)) mice transgenic for the E6/E7 open reading frames of Human Papillomavirus type 16 driven from the alpha-A crystallin promoter expresses E7 mRNA in lens and skin epithelium. E7 protein is detectable in adult skin, coinciding with the development or inflammatory skin disease, which progresses to papillomata and squamous carcinomata in some mice. By examining the outcome of parenteral immunization with E7 protein, we sought to determine whether endogenous expression of E7 in skin had induced a preexisting immune outcome, i.e., specific immunity or tolerance, or whether the mice remain naive (''ignorant'') to E7. Our data show that the antibody response to defined E7 B-epitopes, the proliferative response to Th epitopes, and the delayed-type hypersensitivity (DTH) response to whole E7 did not differ between groups or young and old E6/E7 transgenic mice (likely having different degrees of lifetime exposure to E7 protein) or between E6/E7-transgenic and nontransgenic parental strain control mice. Although an E7-specific CTL response could not be induced in the H-2(q) background of these mice, incorporation of a D-b allele into the genome allowed comparison of D-b-restricted CTL responses in E6/E7 transgenic and nontransgenic mice. Experiments indicated that the E7-immunization-induced CTL response did not differ significantly between E6/E7 transgenic and nontransgenic mice. We interpret these results to indicate that in spite of expression of E7 protein in adult skin, E6/E7 transgenic mice remain immunologically naive (ignorant) of E7 epitopes presented by immunization. (C) 1997 Academic Press.
Resumo:
Homocystinuria, due to a deficiency of the enzyme cystathionine beta-synthase (CBS), is an inborn error of sulphur-amino acid metabolism, This is an autosomal recessive disease which results in hyperhomocysteinaemia and a wide range of clinical features, including optic lens dislocation, mental retardation, skeletal abnormalities and premature thrombotic events, We report the identification of 5 missense mutations in the protein-coding region of the CBS gene from 3 patients with pyridoxine-nonresponsive homocystinuria. Reverse-transcription PCR was used to amplify CBS cDNA from each patient and the coding region was analysed by direct sequencing, The mutations detected included 3 novel (1058C --> T, 992C --> A and 1316G --> A) and 2 previously identified (430G --> A and 833C --> T) base alterations in the CBS cDNA, Each of these mutations predicts a single amino acid substitution in the CBS polypeptide, Appropriate cassettes of patient CBS cDNA, containing each of the above defined mutations, were used to replace the corresponding cassettes of normal CBS cDNA sequence within the bacterial expression vector pT7-7. These recombinant mutant and normal CBS constructs were expressed in Escherichia coli cells and the catalytic activities of the mutant proteins were compared with normal. All of the mutant proteins exhibited decreased catalytic activity in vitro, which confirmed the association between the individual mutation and CBS dysfunction in each patient.
Resumo:
The aim of this study was to evaluate a prognostic score for aids-related lymphoma (ARL). A retrospective study of 104 patients with ARL treated between January 1999 and December 2007 was conducted. Diffuse large B-cell lymphoma (DLBC) was the most observed histological type (79.8%). The median CD4 lymphocyte count at lymphoma diagnosis was 125 cells per microliter. Treatment response could be evaluated in 83 (79.8%) patients, and 38 (45.8%) reached complete remission (CR); overall response rate was 51.8% (95 CI = 38.5-65.1%). After a median follow-up of 48 months, the 4-year overall survival (OS) rate among all patients was 35.8%, with a median survival time of 9.7 months (95% CI = 5.5-13.9 months). The survival risk factors observed in multivariate analysis (previous AIDS and high-intermediate/high international prognostic index (IPI)) were combined to construct a risk score, which divided the whole patient population in three distinct groups as low, intermediate, and high risk. When this score was applied to DLBC patients, a clear distinction in response rates and in OS could be demonstrated. Median disease-free survival (DFS) for patients that achieved CR was not reached, and DFS in 4 years was 83.0%. Our results show that the reduced OS observed could be explained by poor immune status with advanced stage of disease seen in our population of HIV-positive patients. Further studies will be needed to clarify the role of different treatment approaches for ARL in the setting of marked immunosuppression and to identify a group of patients to whom intensive therapy could be performed with a curative intent.
Resumo:
Superparamagnetic iron oxide nanoparticles (SPIONs) are applied in stem cell labeling because of their high magnetic susceptibility as compared with ordinary paramagnetic species, their low toxicity, and their ease of magnetic manipulation. The present work is the study of CD133(+) stem cell labeling by SPIONs coupled to a specific antibody (AC133), resulting in the antigenic labeling of the CD133+ stem cell, and a method was developed for the quantification of the SPION content per cell, necessary for molecular imaging optimization. Flow cytometry analysis established the efficiency of the selection process and helped determine that the CD133 cells selected by chromatographic affinity express the transmembrane glycoprotein CD133. The presence of antibodies coupled to the SPION, expressed in the cell membrane, was observed by transmission electron microscopy. Quantification of the SPION concentration in the marked cells using the ferromagnetic resonance technique resulted in a value of 1.70 x 10 (13) mol iron (9.5 pg) or 7.0 x 10 (6) nanoparticles per cell ( the measurement was carried out in a volume of 2 mu L containing about 6.16 x 10 5 pg iron, equivalent to 4.5 x 10 (11) SPIONs). (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
The aim of this work is to provide a quantitative method for analysis of the concentration of superparamagnetic iron oxide nanoparticles (SPION), determined by means of ferromagnetic resonance (FMR), with the nanoparticles coupled to a specific antibody (AC133), and thus to express the antigenic labeling evidence for the stem cells C D133(+). The FMR efficiency and sensitivity were proven adequate for detecting and quantifying the low amounts of iron content in the C D133(+) cells (similar to 6.16 x 10(5) pg in the volume of 2 mu l containing 4.5 x 1011 SPION). The quantitative method led to the result of 1.70 x 10(-13) mol of Fe (9.5 pg), or 7.0 x 10(6) nanoparticles per cell. For the quantification analysis via the FMR technique it was necessary to carry out a preliminary quantitative visualization of iron oxide-labeled cells in order to ensure that the nanoparticles coupled to the antibodies are indeed tied to the antigen at the stem cell surface and that the cellular morphology was conserved, as proof of the validity of this method. The quantitative analysis by means of FMR is necessary for determining the signal intensity for the study of molecular imaging by means of magnetic resonance imaging (MRI).
Resumo:
The hallmark of Alzheimer's disease is the cerebral deposition of amyloid which is derived from the amyloid precursor protein (APP). The function of APP is unknown but there is increasing evidence for the role of APP in cell-cell and/or cell-matrix interactions. Primary cultures of murine neurons were treated with antisense oligonucleotides to down-regulate APP. This paper presents evidence that APP mediates a substrate-specific interaction between neurons and extracellular matrix components collagen type I, laminin and heparan sulphate proteoglycan but not fibronectin or poly-L-lysine. It remains to be determined whether this effect is the direct result of APP-matrix interactions, or whether an intermediary pathway is involved. (C) 1997 Elsevier Science B.V.
Resumo:
CD40 ligand (CD40-L), a member of the tumor necrosis family of transmembrane glycoproteins, is rapidly and transiently expressed on the surface of recently activated CD4+ T cells. Interactions between CD40-L and CD40 induce B cell immunoglobulin production as well as monocyte activation and dendritic cell differentiation. Since these features characterize rheumatoid arthritis (RA), the expression and function of CD40-L in RA was examined. Freshly isolated RA peripheral blood (PB) and synovial fluid (SF)T cells expressed CD40-L mRNA as well as low level cell surface CD40-L. An additional subset of CD4+ RA SF T cells upregulated cell surface CD40-L expression within 15 min of in vitro activation even in the presence of cycloheximide, but soluble CD40-L was not found in SF. CD40-L expressed by RA T cells was functional, since RA PB and SF T cells but not normal PB T cells stimulated CD40-L-dependent B cell immunoglobulin production and dendritic cell IL-12 expression in the absence of prolonged in vitro T cell activation. In view of the diverse proinflammatory effects of CD40-L, this molecule is likely to play a central role in the perpetuation of rheumatoid synovitis. Of importance, blockade of CD40-L may prove highly effective as a disease modifying therapy for RA.
Resumo:
Purpose. To examine the postnatal development of major histocompatibility complex (MHC) class II-positive dendritic cells (DC) in the iris of the normal rat eye. Methods. Single-and double-color immunomorphologic studies were performed on whole mounts prepared from rat iris taken at selected postnatal ages (2 to 3 days to 78 weeks). Immunopositive cells were enumerated, using a quantitative light microscope, and MHC class II expression on individual cells was assessed by microdensitometric analysis. Results. Major histocompatibility class II-positive DCs in the iris developed in an age-dependent manner and reached adult-equivalent density and structure at approximately 10 weeks of age, considerably later than previously described in other DC populations in the rat. In contrast, the anti-rat DC monoclonal antibody OX62 revealed a population of cells present at adult-equivalent levels as early as 3 weeks after birth. Dual-color immunostaining and microdensitometric analysis demonstrated that during postnatal growth, development of the network of MHC class II-positive DCs was a consequence of the progressive increase in expression of MHC class II antigen by OX62-positive cells. Conclusions. During postnatal growth, the DC population of the iris develops initially as an OX62-positive-MHC class II-negative population, which then develops increasing MHC class II expression in situ and finally resembles classic DC populations in other tissue sites. Maturation of the iris DC population is temporally delayed compared with time to maturation in other tissue sites in the rat.
Resumo:
The cDNAs encoding wild type (WT) human receptor tyrosine kinase c-Kit and a constitutively activated mutant, V816Kit, were introduced into granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent early murine hemopoietic cells, which had been transformed with activated Myb, WTKit cells were able to grow in the presence of the human ligand for Kit, stem cell factor (SCF), but displayed reduced growth and clonogenic potential in either SCF or GM-CSF compared with the parental cells in GM-CSF. In contrast, V816Kit cells grew without factor at a higher rate than the parental cells in GM-CSF and displayed increased clonogenicity. Dissection of the growth characteristics in liquid culture showed that in the presence of appropriate factors, the different populations had similar proliferation rates, but that V816Kit profoundly increased cell survival compared with WTKit or parental cells, This suggests that the signals transduced by WTKit activated with SCF, and by V816Kit, were not identical. Also, WTKit and V816Kit-expressing cells both varied from the early myeloid progenitor phenotype of the parental cells and gave rise to a small number of large to giant adherent cells that expressed macrophage (alpha-naphthyl acetate) esterase and neutrophil (naphtol-AS-D-chloroacetate) esterase, were highly phagocytic and phenotypically resembled histiocytes. Thus, WTKit activated by SCF and V816Kit were able to induce differentiation in a proportion of Myb-transformed myeloid cells. The factor independent V816Kit cells, unlike the parental and WTKit expressing cells, were shown to produce tumors of highly mitotic, invasive cells at various stages of differentiation in syngeneic mice. These results imply that constitutively activated Kit can promote the development of differentiated myeloid tumors and that its oncogenic effects are not restricted to lineages (mast cell and B-cell acute lymphoblastic leukemia), which have been reported previously. Furthermore, the mixed populations of cells in culture and in the tumors phenotypically resembled the leukemic cells from patients with monocytic leukemia with histiocytic differentiation (acute myeloid leukemia-M5c), a newly proposed subtype of myeloid leukemia. (C) 1997 by The American Society of Hematology.
Resumo:
In South America, visceral leishmaniasis is a zoonosis caused by the protozoan species Leishmania infantum (syn. L. chagasi) and is primarily transmitted through the bite of the female Lutzomyia longipalpis. Its main reservoir in urban areas is the dog. The application of control measures recommended by health agencies have not achieved significant results in reducing the incidence of human cases, and the lack of effective drugs to treat dogs resulted in the prohibition of this course of action in Brazil. Therefore, it is necessary to search new alternatives for the treatment of canine and human visceral leishmaniasis. The objectives of this study were to evaluate the in vitro effect of fractions from Aloe vera (aloe), Coriandrum sativum (coriander), and Ricinus communis (castor) on promastigotes and amastigotes of L. infantum and to analyze the toxicity against the murine monocytic cells RAW 264.7. To determine the viability of these substances on 50% parasites (IC50), we used a tetrazolium dye (MU) colorimetric assay (bromide 3-4.5-dimethylthiazol-2-yl-2,5-dephenyltetrazolium), and on amastigotes we performed an in situ ELISA. All fractions were effective against L. infantum promastigotes and did not differ from the positive control pentamidine (p > 0.05). However, the R. communis ethyl acetate and chloroform fractions, as well as the C. sativum methanol fraction, were the most effective against amastigotes and did not differ from the positive control amphotericin B (p > 0.05). The R. communis ethyl acetate fraction was the least toxic, presenting 83.5% viability of RAW 264.7 cells, which was similar to the results obtained with amphotericin B (p > 0.05). Based on these results, we intend to undertake in vivo studies with R. communis ethyl acetate fractions due the high effectiveness against amastigotes and promastigotes of L. infantum and the low cytotoxicity towards murine monocytic cells. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The aim of the current study was to investigate the apoptosis of neurons, astrocytes and immune cells from human patients that were infected with rabies virus by vampire bats bite. Apoptotic neurons were identified by their morphology and immune cells were identified using double immunostaining. There were very few apoptotic neurons present in infected tissue samples, but there was an increase of apoptotic infiltrating CD4+ and TCD8+ adaptive immune cells in the rabies infected tissue. No apoptosis was present in NK, macrophage and astrocytes. The dissemination of the human rabies virus within an infected host may be mediated by viral escape of the virus from an infected cell and may involve an anti-apoptotic mechanism, which does not kill the neuron or pro-apoptosis of TCD4+ and TCD8+ lymphocytes and which allows for increased proliferation of the virus within the CNS by attenuation of the adaptive immune response. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We hypothesized that bone marrow-derived mononuclear cells (BMDMC) would attenuate the remodeling process in a chronic allergic inflammation model. C57BL/6 mice were assigned to two groups. In OVA, mice were sensitized and repeatedly challenged with ovalbumin. Control mice (C) received saline under the same protocol. C and OVA were further randomized to receive BMDMC (2 x 10(6)) or saline intravenously 24 h before the first challenge. BMDMC therapy reduced eosinophil infiltration, smooth muscle-specific actin expression, subepithelial fibrosis, and myocyte hypertrophy and hyperplasia, thus causing a decrease in airway hyperresponsiveness and lung mechanical parameters. BMDMC from green fluorescent protein (GFP)-transgenic mice transplanted into GFP-negative mice yielded lower engraftment in OVA. BMDMC increased insulin-like growth factor expression, but reduced interleukin-5, transforming growth factor-beta, platelet-derived growth factor, and vascular endothelial growth factor mRNA expression. In conclusion, in the present chronic allergic inflammation model, BMDMC therapy was an effective pre-treatment protocol that potentiated airway epithelial cell repair and prevented inflammatory and remodeling processes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Hepatic progenitor cells (HPCs) are bipotential stem cells residing in human and animal livers that are able to differentiate towards the hepatocytic or cholangiocytic lineages. HPCs are present in both hepatocellular (HCC) and cholangiocellular carcinoma (CC) in humans; and a small percentage of HCC can originate from cancer stem cells. However, its distribution in canine liver tumour has not been studied. Herein, we searched for stem/progenitor cells in 13 HCC and 7 CC archived samples by immunohistochemical analysis. We found that both liver tumours presented a higher amount of K19-positive HPCs. Besides, 61.6% of HCC cases presented immature CD44-positive hepatocytes. Nevertheless, only two cases presented CD133-positive cells. As observed in humans, hepatic canine tumours presented activated HPCs, with important differentiation onto hepatocytes-like cells and minimal role of cancer stem cells on HCC. These findings reiterate the applicability of canine model in the search for new therapies before application in humans.