972 resultados para Power generator
Resumo:
Two decision versions of a combinatorial power minimization problem for scheduling in a time-slotted Gaussian multiple-access channel (GMAC) are studied in this paper. If the number of slots per second is a variable, the problem is shown to be NP-complete. If the number of time-slots per second is fixed, an algorithm that terminates in O (Length (I)N+1) steps is provided.
Resumo:
In this paper, we study the thermoelectric power under strong magnetic field (TPSM) in quantum dots (QDs) of nonlinear optical, III-V, II-VI, GaP, Ge, Te, Graphite, PtSb2, zerogap, Lead Germanium Telluride, GaSb, stressed materials, Bismuth, IV-VI, II-V, Zinc and Cadmium diphosphides, Bi2Te3 and Antimony respectively. The TPSM in III-V, II-VI, IV-VI, HgTe/CdTe quantum well superlattices with graded interfaces and effective mass superlattices of the same materials together with the quantum dots of aforementioned superlattices have also been investigated in this context on the basis of respective carrier dispersion laws. It has been found that the TPSM for the said quantum dots oscillates with increasing thickness and decreases with increasing electron concentration in various manners and oscillates with film thickness, inverse quantizing magnetic field and impurity concentration for all types of superlattices with two entirely different signatures of quantization as appropriate in respective cases of the aforementioned quantized structures. The well known expression of the TPSM for wide-gap materials has been obtained as special case for our generalized analysis under certain limiting condition, and this compatibility is an indirect test of our generalized formalism. Besides, we have suggested the experimental method of determining the carrier contribution to elastic constants for nanostructured materials having arbitrary dispersion laws.
Resumo:
A new approach based on finite difference method, is proposed for the simulation of electrical conditions in a dc energized wire-duct electrostatic precipitator with and without dust loading. Simulated voltage-curren characteristics with and without dust loading were compared with the measured characteristics for analyzing the performance of a precipitator. The simple finite difference method gives sufficiently accurate results with reduced mesh size. The results for dust free simulation were validated with published experimental data. Further measurements were conducted at a thermal power plant in India and the results compares well with the measured ones.
Resumo:
We consider a dense, ad hoc wireless network confined to a small region, such that direct communication is possible between any pair of nodes. The physical communication model is that a receiver decodes the signal from a single transmitter, while treating all other signals as interference. Data packets are sent between source-destination pairs by multihop relaying. We assume that nodes self-organise into a multihop network such that all hops are of length d meters, where d is a design parameter. There is a contention based multiaccess scheme, and it is assumed that every node always has data to send, either originated from it or a transit packet (saturation assumption). In this scenario, we seek to maximize a measure of the transport capacity of the network (measured in bit-meters per second) over power controls (in a fading environment) and over the hop distance d, subject to an average power constraint. We first argue that for a dense collection of nodes confined to a small region, single cell operation is efficient for single user decoding transceivers. Then, operating the dense ad hoc network (described above) as a single cell, we study the optimal hop length and power control that maximizes the transport capacity for a given network power constraint. More specifically, for a fading channel and for a fixed transmission time strategy (akin to the IEEE 802.11 TXOP), we find that there exists an intrinsic aggregate bit rate (Theta(opt) bits per second, depending on the contention mechanism and the channel fading characteristics) carried by the network, when operating at the optimal hop length and power control. The optimal transport capacity is of the form d(opt)((P) over bar (t)) x Theta(opt) with d(opt) scaling as (P) over bar (1/eta)(t), where (P) over bar (t) is the available time average transmit power and eta is the path loss exponent. Under certain conditions on the fading distribution, we then provide a simple characterisation of the optimal operating point.
Resumo:
Inadvertent failure of power transformers has serious consequences on the power system reliability, economics and the revenue accrual. Insulation is the weakest link in the power transformer prompting periodic inspection of the status of insulation at different points in time. A close Monitoring of the electrical, chemical and such other properties on insulation as are sensitive to the amount of time-dependent degradation becomes mandatory to judge the status of the equipment. Data-driven Diagnostic Testing and Condition Monitoring (DTCM) specific to power transformer is the aspect in focus. Authors develop a Monte Carlo approach for augmenting the rather scanty experimental data normally acquired using Proto-types of power transformers. Also described is a validation procedure for estimating the accuracy of the Model so developed.
Resumo:
This paper presents design of a Low power 256x72 bit TCAM in 0.13um CMOS technology. In contrast to conventional Match line (ML) sensing scheme in which equal power is consumed irrespective of match or mismatch, the ML scheme employed in this design allocates less power to match decisions involving a large number of mismatched bits. Typically, the probability of mismatch is high so this scheme results in significant CAM power reduction. We propose to use this technique along with pipelining of search operation in which the MLs are broken into several segments. Since most words fail to match in first segment, the search operation for subsequent segments is discontinued, resulting in further reduction in power consumption. The above architecture provides 70% power reduction while performing search in 3ns.
Resumo:
Four hybrid algorithms has been developed for the solution of the unit commitment problem. They use simulated annealing as one of the constituent techniques, and produce lower cost schedules; two of them have less overhead than other soft computing techniques. They are also more robust to the choice of parameters. A special technique avoids the generating of infeasible schedules, and thus reduces computation time.
Resumo:
Previous research has shown that action tendencies to approach alcohol may be modified using computerized ApproacheAvoidance Task (AAT), and that this impacted on subsequent consumption. A recent paper in this journal (Becker, Jostman, Wiers, & Holland, 2015) failed to show significant training effects for food in three studies: Nor did it find effects on subsequent consumption. However, avoidance training to high calorie foods was tested against a control rather than Approach training. The present study used a more comparable paradigm to the alcohol studies. It randomly assigned 90 participants to ‘approach’ or ‘avoid’ chocolate images on the AAT, and then asked them to taste and rate chocolates. A significant interaction of condition and time showed that training to avoid chocolate resulted in faster avoidance responses to chocolate images, compared with training to approach it. Consistent with Becker et al.'s Study 3, no effect was found on amounts of chocolate consumed, although a newly published study in this journal (Schumacher, Kemps, & Tiggemann, 2016) did do so. The collective evidence does not as yet provide solid basis for the application of AAT training to reduction of problematic food consumption, although clinical trials have yet to be conducted.
Resumo:
A combined base station association and power control problem is studied for the uplink of multichannel multicell cellular networks, in which each channel is used by exactly one cell (i.e., base station). A distributed association and power update algorithm is proposed and shown to converge to a Nash equilibrium of a noncooperative game. We consider network models with discrete mobiles (yielding an atomic congestion game), as well as a continuum of mobiles (yielding a population game). We find that the equilibria need not be Pareto efficient, nor need they be system optimal. To address the lack of system optimality, we propose pricing mechanisms. It is shown that these mechanisms can be implemented in a distributed fashion.
Resumo:
Electricity generation is vital in developed countries to power the many mechanical and electrical devices that people require. Unfortunately electricity generation is costly. Though electricity can be generated it cannot be stored efficiently. Electricity generation is also difficult to manage because exact demand is unknown from one instant to the next. A number of services are required to manage fluctuations in electricity demand, and to protect the system when frequency falls too low. A current approach is called automatic under frequency load shedding (AUFLS). This article proposes new methods for optimising AUFLS in New Zealand’s power system. The core ideas were developed during the 2015 Maths and Industry Study Group (MISG) in Brisbane, Australia. The problem has been motivated by Transpower Limited, a company that manages New Zealand’s power system and transports bulk electricity from where it is generated to where it is needed. The approaches developed in this article can be used in electrical power systems anywhere in the world.
Resumo:
Laser mediated stimulation of biological process was amongst its very first effects documented by Mester et al. but the ambiguous and tissue-cell context specific biological effects of laser radiation is now termed ‘Photobiomodulation’. We found many parallels between the reported biological effects of lasers and a multiface-ted growth factor, Transforming Growth Factor-β (TGF-β). This review outlines the interestingparallelsbetween the twofieldsand our rationalefor pursuingtheir potential causal correlation. We explored this correlation using an in vitro assay systems and a human clinical trial on healing wound extraction sockets that we reported in a recent publication. In conclusion we report that low power laser irradiation can activate latent TGF-β1 and β3 complexes and suggest that this might be one of the major modes of the photobiomodulatory effects of low power lasers.
Resumo:
A generalized technique is proposed for modeling the effects of process variations on dynamic power by directly relating the variations in process parameters to variations in dynamic power of a digital circuit. The dynamic power of a 2-input NAND gate is characterized by mixed-mode simulations, to be used as a library element for 65mn gate length technology. The proposed methodology is demonstrated with a multiplier circuit built using the NAND gate library, by characterizing its dynamic power through Monte Carlo analysis. The statistical technique of Response. Surface Methodology (RSM) using Design of Experiments (DOE) and Least Squares Method (LSM), are employed to generate a "hybrid model" for gate power to account for simultaneous variations in multiple process parameters. We demonstrate that our hybrid model based statistical design approach results in considerable savings in the power budget of low power CMOS designs with an error of less than 1%, with significant reductions in uncertainty by atleast 6X on a normalized basis, against worst case design.
Resumo:
Sequence design problems are considered in this paper. The problem of sum power minimization in a spread spectrum system can be reduced to the problem of sum capacity maximization, and vice versa. A solution to one of the problems yields a solution to the other. Subsequently, conceptually simple sequence design algorithms known to hold for the white-noise case are extended to the colored noise case. The algorithms yield an upper bound of 2N - L on the number of sequences where N is the processing gain and L the number of non-interfering subsets of users. If some users (at most N - 1) are allowed to signal along a limited number of multiple dimensions, then N orthogonal sequences suffice.
Resumo:
A three-level space phasor generation scheme with common mode elimination and with reduced power device count is proposed for an open end winding induction motor in this paper. The open end winding induction motor is fed by the three-level inverters from both sides. Each two level inverter is formed by cascading two two-level inverters. By sharing the bottom inverter for the two three-level inverters on either side, the power device count is reduced. The switching states with zero common mode voltage variation are selected for PWM switching so that there is no alternating common mode voltage in the pole voltages as well as in phase voltages. Only two isolated DC-links, with half the voltage rating of a conventional three-level neutral point clamped inverter, are needed for the proposed scheme.