933 resultados para Piezoelectric flextensional actuators
Resumo:
PZT陶瓷粉体的制备和研究。用溶胶一凝胶法制备了错钦酸铅Pb(Zr_(0.52)Ti_(0.48))O_3(PZT),研究了溶剂乙二醇单甲醚和水的比例对PZT的晶化温度和晶粒尺寸的影响,结果表明,随溶剂比例的增大,PZT粉体的晶化温度升高晶粒尺寸增大,当V(C_3H_9O_2)/V(H_2O)=4.47时,不仅缩短了溶胶-凝胶过程的时间,且得到的PZT粉体晶化温度低(443℃),晶粒的粒径分布集中(60-70nm)。PZT掺杂压电陶瓷的制备和研究。用同一主族元素对PZT进行掺杂改性实验,制备了Ca-PZT,Sr-PZT,Ba-PZT三个系列的压电陶瓷体系,其中每个体系中又包含1%、3%、5%、7%、9%(10%,11%)不同的掺杂量。经过压片,蒸镀电极,极化处理后测定其由,常数,结果表明,Ba离子的半径是最适合掺杂的离子半径。PZT和PbTIO。(PT)稳定溶胶的制备。在溶胶形成过程中,通过调整溶剂乙二醇单甲醚和水的比例,并加入适当量的乙酞丙酮作稳定剂,在有水体系下制备稳定的PZT和PT溶胶前驱体。该方法省略了制备中的蒸馏过程,简化了PZT和PT稳定溶胶的制备工艺。PZT铁电薄膜的制备。用自制的溶胶进行旋涂制膜,制备了膜层厚度不同的PZT和PT-PZT薄膜,在不同的锻烧温度,锻烧时间下处理为晶态膜,并对晶态膜进行表征,证明获得了钙钦矿结构的PZT晶态膜。
Resumo:
尽管体细胞核移植(somatic cell nuclear transfer, SCNT)技术仍然处于 起步发展阶段,但是随着体细胞核移植技术在近些年来的飞速发展,人们已经得 到了多种哺乳动物体细胞核移植的存活后代。体细胞核移植技术在生物医药、农 业及其它领域的应用显示了这项技术的巨大发展前景。另一方面,人们发现体细 胞核移植效率低下并且体细胞克隆动物存在许多缺陷,这些主要是由于核移植技 术,供体细胞选择,体外培养系统以及卵母细胞的状态等的差异导致的。本研究 主要围绕着这些因素在体细胞核移植过程中对于克隆胚胎植入前后发育的影响 而开展,目的在于提高体细胞核移植的效率。 实验一,研究了几个因素对克隆胚胎发育和克隆效率的影响,为提高体细胞 核移植效率提供一些依据。这部分研究主要包括四倍体半克隆小鼠研究和蛋白酶 体抑制剂在克隆胚胎和孤雌激活胚胎发育中的影响。四倍体体细胞半克隆 (tetraploid semi-cloned , TSC)胚胎的体外发育结果表明,虽然TSC 胚胎可 能避免二倍体半克隆胚胎发育过程中的非整倍体现象,但是仍然不能形成胎儿。 另外,利用蛋白酶体抑制剂MG132 处理克隆胚胎的结果表明,虽然MG132 通过抑 制成熟促进因子(maturation promoting factors,MPF)活性的降低可以提高 克隆胚胎的体外发育率,但是没有改变克隆胚胎的质量。 实验二,研究了克隆技术在克隆胚胎构建和发育上的影响。首先,我们研究 了完整颗粒细胞注射到卵母细胞中所引起的变化。我们发现完整的颗粒细胞注入 到卵母细胞中之后很快引起细胞膜裂解和细胞核碎裂,从而导致激活后重构胚胎 的碎裂。这一实验表明完整供体细胞核注入的方法不适用于小鼠体细胞克隆。接 下来我们研究了不同的核移植技术――利用piezo 的直接注射法(piezoelectric microinjection,PEM)和电融合法(Electrofusion,EF)――对植入前后的克隆胚 胎以及出生后的克隆动物的影响。研究的结果发现,在PEM 法中,提高piezo 脉 冲的强度会导致供体细胞核DNA 断裂增加,使植入前克隆胚胎的细胞数目减少, 凋亡增加,从而降低克隆胚胎的质量。相反,在用EF 法产生的胚胎中细胞核DNA 的断裂很少,克隆胚胎质量相对较好。实验的结果表明,由于两种克隆技术利用 的原理不同,会对克隆胚胎的发育产生一定的影响,从而改变克隆的效率。 实验三,研究了猕猴体细胞克隆胚胎早期发育过程中细胞核内有丝分裂器蛋 白[Nuclear Mitotic Apparatus Protein,NuMA]的表达和分布。尽管在有些猕猴体 细胞核移植胚胎中没有检测到NuMA 的正确表达和分布并且有些胚胎出现了微 管组装异常,但是大多数猕猴体细胞核移植胚胎具有正常的NuMA 蛋白表达和 正常的核型。通过改进操作技术我们得到了可以发育到正常囊胚的猕猴体细胞核 移植胚胎。这些结果提示猕猴SCNT 胚胎发育失败的原因不是NuMA 等重要蛋 白的缺失。
Resumo:
Phosphatidylcholine (PC) and six other PC-similar lipids are coated on interdigital electrodes, IEs, as sensitive membranes. Eight alcohols (C-1-C-4) are tested in a flow system at room temperature. It is found that all responses are log(response)-log(concentration) linear relations. These results agree with Steven's law in psychophysics. Moreover, the thresholds of the sensors are coincident with human olfactory thresholds. The authors have analysed the data of the lipid hypothesis suggested by Kurihara et al. We have found that this hypothesis is also in agreement with Steven's law. Lipid microresistors are real mimicking olfactory sensors. A definition of an olfactory sensor is suggested.
Resumo:
Three causes involved in the instability of the ISFET are proposed in this study. First, it is ascertained that hydroxyl group resident at the surface of the Si3N4 film or in the electrolyte solution is most active and subject to gain or loss of electrons. This is one of the main causes for ISFET structural instability. Secondly, the stability of the pH-sensitive FET varies with deposition conditions in the fabrication process of the ISFET. This proves to be another cause of ISFET instability. Thirdly, the pH of the measured solution varies with the measuring process and time, contributing to the instability, but is not a cause of the instability of the pH-ISFET itself. We utilized the technique of readjusting and controlling the ratio of hydroxyl groups to amine groups to enhance the stability of the ISFET. Our techniques to improve stability characteristics proved to be effective in practice.
Resumo:
In this paper, an interdigital electrode lipid film odour sensor (ILOS) is designed, fabricated and tested. It is made from a microfabricated chemiresistor coated with a synthetic multibilayer film. Nine odorants in gas phase at room temperature have been detected using the odour sensor. For most of the odorants, the relation between the response of the ILOS and odorant concentration obeys Stevens' power law, and there is a good correlation between the minimum odorant concentrations that give rise to a change of the sensor's conductance and human olfactory thresholds.
Resumo:
Quantitative determinations of the hydrogen content and its profile in silicon nitride sensitive films by the method of resonant nuclear reaction have been carried out. At a deposition temperature of 825-degrees-C, hydrogen exists in an LPCVD silicon nitride sensitive film and the hydrogen content on its surface is in the range (8-16) x 10(21) cm-3, depending on the different deposition processes used. This hydrogen content is larger than the (2-3) x 10(21) cm-3 in its interior part, which is homogeneous. Meanwhile, we observe separate peaks for the chemical bonding configurations of Si-H and N-H bonds, indicated by the infrared absorption bands Si-O (1106 cm-1), N-H (1200 cm-1), Si-H-3 (2258 cm-1) and N-H-2 (3349 cm-1), respectively. The worse linear range of the ISFET is caused by the presence of oxygen on the surface of the silicon nitride sensitive film. The existence of chemical bonding configurations of Si-H, N-H and N-Si on its surfaces is favourable for its pH response.
Resumo:
Photoluminescence (PL) and temperature-dependent Hall effect measurements were carried out in (0001) and (11 (2) over bar0) AlGaN/GaN heterostructures grown on sapphire substrates by metalorganic chemical vapor deposition. There are strong spontaneous and piezoelectric electric fields (SPF) along the growth orientation of the (0001) AlGaN/GaN heterostructures. At the same time there are no corresponding SPF along that of the (1120) AlGaN/GaN. A strong PL peak related to the recombination between two-dimensional electron gas (2DEG) and photoexcited holes was observed at 3.258 eV at room temperature in (0001) AlGaN/GaN heterointerfaces while no corresponding PL peak was observed in (11 (2) over bar0). The existence of a 2DEG was observed in (0001) AlGaN/GaN multi-layers with a mobility saturated at 6000 cm(2)/V s below 80 K, whereas a much lower mobility was measured in (11 (2) over bar0). These results indicated that the SPF was the main element to cause the high mobility and high sheet-electron-density 2DEG in AlGaN/GaN heterostructures. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Excitation-power dependence of hydrostatic pressure coefficients (dE/dP) of InxGa1-xN/InyGa1-yN multiple quantum wells is reported. When the excitation power increases from 1.0 to 33 mW, dE/dP increases from 26.9 to 33.8 meV/GPa, which is an increase by 25%. A saturation behavior of dE/dP with the excitation power is observed. The increment of dE/dP with increasing carrier density is explained by an reduction of the internal piezoelectric field due to an efficient screening effect of the free carriers on the field.
Resumo:
High-quality GaN epilayers were consistently obtained using a home-made gas-sourer MBE system on sapphire substrates. Room-temperature electron mobility of the grown GaN film is 300 cm(2)/V s with a background electron concentration as low as 2 x 10(17) cm(-3) The full-width at half-maximum of the GaN (0 0 0 2) double-crystal X-ray rocking curve is 6 arcmin. At low temperature (3.5 K), the FWHM of the: near-band-edge photoluminescence emission line is 10 meV. Furthermore, using piezoelectric effect alone with the high-quality films, two-dimensional electron gas was formed in a GaN/AlN/GaN/sapphire structure. Its room-temperature and low-temperature (77 K) electron mobility is 680 cm(2)/V s and 1700 cm(2)/V s, and the corresponding sheet electron density is 3.2 x 10(13) and 2.6 x 10(13) cm(-2), respectively. (C) 2001 Published by Elsevier Science.
Resumo:
For an olfactory sensor or electronic nose, the task is not only to detect the object concentration, but also to recognize it. It is well known that all the elements can be identified by their charge to mass ratio e(+)/m. We tried to imitate this principle for molecular recognition. Two kinds of sensors are used simultaneously in testing. One is quartz crystal microbalance (QCM) for detecting the change in mass, the other is interdigital electrode (IE) for detecting the change in conduction, as an electro-mass multi-sensor (EMMS). in this paper, the principle and the feasibility of this method are discussed. The preliminary results on the recognition of alcohol by EMMS coated with lipids are presented. Meanwhile, the multi-sensor can also be used as an instrument for research on some physico-chemistry problems. The change in conduction of coated membrane caused by one absorbed molecule is reported. It is found that when a QCM is coated with membrane, it still obeys the relationship Delta F (frequency change of QCM) = K Delta m (mass change of absorbed substance) and the proportional coefficient, K, depends not only on quartz properties but also on membrane characteristics as well. (C) 2000 Elsevier Science S.A. All rights reserved.