913 resultados para Phase rule and equilibrium.
Resumo:
A theoretical model of superradiant pulse generation in semiconductor laser structures is developed. It is shown that a high optical gain of the medium can overcome phase relaxation and results in a built-up superradiant state (macroscopic dipole) in an assembly of electron - hole pairs on a time scale much longer than the characteristic polarisation relaxation time T2. A criterion of the superradiance generation is the condition acmT2 > 1, where α is the gain coefficient and cm is the speed of light in the medium. The theoretical model describes both qualitatively and quantitatively the author's own experimental results.
Resumo:
In this paper we propose a new algorithm for reconstructing phase-encoded velocity images of catalytic reactors from undersampled NMR acquisitions. Previous work on this application has employed total variation and nonlinear conjugate gradients which, although promising, yields unsatisfactory, unphysical visual results. Our approach leverages prior knowledge about the piecewise-smoothness of the phase map and physical constraints imposed by the system under study. We show how iteratively regularizing the real and imaginary parts of the acquired complex image separately in a shift-invariant wavelet domain works to produce a piecewise-smooth velocity map, in general. Using appropriately defined metrics we demonstrate higher fidelity to the ground truth and physical system constraints than previous methods for this specific application. © 2013 IEEE.
Resumo:
Microcystis aeruginosa Kutz. 7820 was cultured at 350 and 700 muL.L-1 CO2 to assess the impacts of doubled atmospheric CO2 concentration on this bloom-forming cyanobacterium. Doubling Of CO2 concentration in the airflow enhanced its growth by 52%-77%, with pH values decreased and dissolved inorganic carbon (DIC) increased in the medium. Photosynthetic efficiencies and dark respiratory rates expressed per unit chl a tended to increase with the doubling of CO2. However, saturating irradiances for photosynthesis and light-saturated photosynthetic rates normalized to cell number tended to decrease with the increase of DIC in the medium. Doubling of CO2 concentration in the airflow had less effect on DIC-saturated photosynthetic rates and apparent photosynthetic affinities for DIC. In the exponential phase, CO2 and HCO3- levels in the medium were higher than those required to saturate photosynthesis. Cultures with surface aeration were DIC limited in the stationary phase. The rate of CO2 dissolution into the liquid increased proportionally when CO2 in air was raised from 350 to 700 muL.L-1, thus increasing the availability of DIC in the medium and enhancing the rate of photosynthesis. Doubled CO2 could enhance CO2 dissolution, lower pH values, and influence the ionization fractions of various DIC species even when the photosynthesis was not DIC limited. Consequently, HCO3- concentrations in cultures were significantly higher than in controls, and the photosynthetic energy cost for the operation of CO2 concentrating mechanism might decrease.
Resumo:
Using the transfer matrix renormalization group (TMRG) method, we study the connection between the first derivative of the thermal average of driving-term Hamiltonian (DTADH) and the trace of quantum critical behaviors at finite temperatures. Connecting with the exact diagonalization method, we give the phase diagrams and analyze the properties of each phase for both the ferromagnetic and anti-ferromagnetic frustrated J(3) anisotropy diamond chain models. The finite-temperature scaling behaviors near the critical regions are also investigated. Further, we show the critical behaviors driven by external magnetic field, analyze the formation of the 1/3 magnetic plateau and the influence of different interactions on those critical points for both the ferrimagnetic and anti-ferromagnetic distorted diamond chains.
Resumo:
The Berry phase of a bipartite system described by a Heisenberg XXZ model driven by a one-site magnetic field is investigated. The effect of the Dzyaloshinski-Moriya (DM) anisotropic interaction on the Berry phase is discussed. It is found that the DM interaction affects the Berry phase monotonously. and can also cause sudden change of the Berry phase for some weak magnetic field cases. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
High-quality InAsxSb1-x (0 < x <= 0.3) films are grown on GaAs substrates by liquid phase epitaxy and electrical and optical properties of the films are investigated, revealing that the films exhibit Hall mobilities higher than 2x10(4) cm(2) V-1 s(-1) and cutoff wavelengths longer than 10 mu m at room temperature (RT). Photoconductors are fabricated from the films, and notable photoresponses beyond 8 mu m are observed at RT. In particular, for an InAs0.3Sb0.7 film, a photoresponse of up to 13 mu m with a maximum responsivity of 0.26 V/W is obtained at RT. Hence, the InAsxSb1-x films demonstrate attractive properties suitable for room-temperature, long-wavelength infrared detectors. (c) 2006 American Institute of Physics.
Resumo:
Based on the conventional through-short-match (TSM) method, an improved TSM method has been proposed in this Letter. This method gives an analytical solution and has almost all the advantages of conventional TSM methods. For example, it has no phase uncertainty and no bandwidth limitation. The experimental results show that the accuracy can be significantly improved with this method. The proposed theory can be applied to the through-open-match (TOM) method. (C) 2002 Wiley Periodicals. Inc.
Resumo:
A systematic investigation of crystallographic and intrinsic magnetic properties of the hydrides R3Fe29 - xVxHy (R = Y, Ce, Nd, Sm, Gd, Tb, and Dy) has been performed in this work. The lattice constants a, b, and c and the unit cell volume of R3Fe29 - xVxHy decrease with increasing rare-earth atomic number from Nd to Dy, except for Ce, reflecting the lanthanide contraction. Hydrogenation results in regular anisotropic expansions along the a-, b-, and c-axes in this series of hydrides. Abnormal crystallographic and magnetic properties of Ce3Fe27.5V1.5H6.5, like Ce3Fe27.5V1.5, suggest that the Ce ion is non-triply ionized. Hydrogenation leads to the increase in both Curie temperature for all the compounds and in the saturation magnetization at 4.2 K and RT for R3Fe29 - xVx with R = Y, Ce, Nd, Sm, Gd, and Dy, except for Tb. Hydrogenation also leads to a decrease in the anisotropy field at 4.2 K and RT for R3Fe29 - xVx with R = Y, Ce, Nd, Gd, Tb, and Dy, except for Sm. The Ce3Fe27.5V1.5 and Gd3Fe28.4V0.6 show the larger storage of hydrogen with y = 6.5 and 6.9 in these hydrides. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
We investigated AlGaN layers grown by metalorganic chemical vapor deposition (MOCVD) on high temperature (HT-)GaN and AlGaN buffer layers. On GaN buffer layer, there are a lot of surface cracking because of tensile strain in subsequent AlGaN epilayers. On HT-AlGaN buffer layer, not only cracks but also high densities rounded pits present, which is related to the high density of coalescence boundaries in HT-AlGaN growth process.The insertion of interlayer (IL) between AlGaN and the GaN pseudosubstrate can not only avoid cracking by modifying the strain status of the epilayer structure, but also improved Al incorporation efficiency and lead to phase-separation. And we also found the growth temperature of IL is a critical parameter for crystalline quality of subsequent AlGaN epilayer. Low temperature (LT-) A1N IL lead to a inferior quality in subsequent AlGaN epilayers.
Resumo:
This paper presents a direct digital frequency synthesizer (DDFS) with a 16-bit accumulator, a 4th-order single-stage pipelined delta-sigma interpolator and a 300MS/s 12-bit current-steering DAC based on Q(2) Random Walk switching scheme. The delta-sigma interpolator is used to reduce the phase truncation error and the ROM size. The measured spurious-free dynamic range (SFDR) is greater than 80 dB for 8-bit phase value and 12-bit sine-amplitude output. The DDFS prototype is fabricated in a 0.35um CMOS technology with core area of 1.11mm(2).
Resumo:
It is a typical multiphase flow process for hydrate formation in seeping seafloor sediments. Free gas can not only be present but also take part in formation of hydrate. The volume fraction of free gas in local pore of hydrate stable zone (HSZ) influences the formation of hydrate in seeping seafloor area, and methane flux determines the abundance and resource of hydrate-bearing reservoirs. In this paper, a multiphase flow model including water (dissolved methane and salt)-free gas hydrate has been established to describe this kind of flow-transfer-reaction process where there exists a large scale of free gas migration and transform in seafloor pore. In the order of three different scenarios, the conversions among permeability, capillary pressure, phase saturations and salinity along with the formation of hydrate have been deducted. Furthermore, the influence of four sorts of free gas saturations and three classes of methane fluxes on hydrate formation and the resource has also been analyzed and compared. Based on the rules drawn from the simulation, and combined information gotten from drills in field, the methane hydrate(MH) formation in Shenhu area of South China Sea has been forecasted. It has been speculated that there may breed a moderate methane flux below this seafloor HSZ. If the flux is about 0.5 kg m-2 a-1, then it will go on to evolve about 2700 ka until the hydrate saturation in pore will arrive its peak (about 75%). Approximately 1.47 109 m3 MH has been reckoned in this marine basin finally, is about 13 times over preliminary estimate.
Resumo:
Ultra-broadband optical parametric chirped-pulse amplification is analyzed based the compensation of phase-mismatch, which is achieved by matching of both group-velocity and pulse-front between signal and idler by the combination of the noncollinear-phase-match and pulse-front-tilt. The results show exactly matching of both group-velocity and pulse-front is the important criterion for constructing an UBOPCPA. Its general model is developed, in which the group velocities, noncollinear angles. spatial walk-off angles, linear angular spectral dispersion coefficients and pulse-front tilted angles are suitably linked to each other. Finally, specific numerical calculations and simulations are presented for beta-barium borate OPCPA with type-1 noncollinear angularly dispersed geometry. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
We fabricated a bandpass filter based on Moire Bragg grating in fiber with a uniform phase mask We employed a stretch and two-exposure technique, in which the fiber was exposed to UV light from a KrF excimer through a phase mask and then the fiber is stretched and given another exposure at the same region. Due to the stretch, the periods of these two grating are slightly different, and there is a transmission between two reflection peaks at the Bragg wavelength of these two gratings.Applying different stretch can control the bandpass width of the filter. We measured the stretch characterization of a uniform Bragg grating and found the Bragg wavelength of the grating shifts linearly with the stretched length.We theoretically analyzed the grating structure and its reflection spectrum. The filter's characteristics can be optimized by choosing appropriate parameters. We will give a theoretical discussion concerning which parameters and how they affect the filter's operation.
Resumo:
Phase transformation and subdomain structure in [0001]-oriented gallium nitride (GaN) nanorods of different sizes are studied using molecular dynamics simulations. The analysis concerns the structure of GaN nanorods at 300 K without external loading. Calculations show that a transformation from wurtzite to a tetragonal structure occurs along {0110} lateral surfaces, leading to the formation of a six-sided columnar inversion domain boundary (IDB) in the [0001] direction of the nanorods. This structural configuration is similar to the IDB structure observed experimentally in GaN epitaxial layers. The transformation is significantly dependent on the size of the nanorods.
Resumo:
Sand storm is a serious environmental threat to humans. Sand particles are transported by saltation and suspension, causing soil erosion in one place and deposition in another. In order to prevent and predict sand storms, the causes and the manners of particle motions must be studied in detail. In this paper a standard k-epsilon model is used for the gas phase simulation and the discrete element method (DEM) is used to predict the movements of particles using an in-house procedure. The data are summarized in an Eulerian-Eulerian regime after simulation to get the statistical particle Reynolds stress and particle collision stress. The results show that for the current case the Reynolds stress and the air shear stress predominate in the region 20-250 mm above the initial sand bed surface. However, in the region below 3 mm, the collision stress must be taken into account in predicting particle movement. (C) 2010 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.