935 resultados para NMR pulse sequence design
Resumo:
In this paper, several aspects of high frequency related issues of modern AC motor drive systems, such as common mode voltage, shaft voltage and resultant bearing current and leakage currents, have been discussed. Conducted emission is a major problem in modern motor drives that produce undesirable effects on electronic devices. In modern power electronic systems, increasing power density and decreasing cost and size of system are market requirements. Switching losses, harmonics and EMI are the key factors which should be considered at the beginning stage of a design to optimise a drive system.
Blogs, wikis and podcasts : collaborative knowledge building tools in a design and technology course
Resumo:
Design and Technology has become an important part of the school curriculum. In Queensland, Australia, Technology (which encompasses Design) is one of the Key Learning Areas (KLAs) for students in the first ten years of schooling. This KLA adopts a student-centred, hands-on constructivist approach to teaching and learning. The ability to conceptualise and implement appropriate learning experiences, however, has been a challenge for some early career teachers. This paper describes how Design and Technology is being taught to pre-service primary teachers at an Australian University through their involvement in a range of authentic problem-solving activities supported by social learning tools such as wikis and blogs. An interview with a sample from this group (N=5) provides an insight into how these social software tools enhanced their knowledge and learning. This paper will describe how these social learning tools impact on the agency of learning.
Resumo:
Aims: To investigate the change that occurs in intraocular pressure (IOP) and ocular pulse amplitude (OPA) with accommodation in young adult myopes and emmetropes. Methods: Fifteen progressing myopic and 17 emmetropic young adult subjects had their IOP and OPA measured using the Pascal dynamic contour tonometer. Measurements were taken initially with accommodation relaxed, and then following 2 min of near fixation (accommodative demand 3 D). Baseline measurements of axial length and corneal thickness were also collected prior to the IOP measures. Results: IOP significantly decreased with accommodation in both the myopic and emmetropic subjects (mean change 1.861.1 mm Hg, p<0.0001). There was no significant difference (p>0.05) between myopes and emmetropes in terms of baseline IOP or the magnitude of change in IOP with accommodation. OPA also decreased significantly with accommodation (mean change for all subjects 0.560.5, p<0.0001). The myopic subjects (baseline OPA 2.060.7 mm Hg) exhibited a significantly lower baseline OPA (p¼0.004) than the emmetropes (baseline OPA 3.261.3 mm Hg),and a significantly lower magnitude of change in OPA with accommodation. Conclusion: IOP decreases significantly with accommodation, and changes similarly in progressing myopic and emmetropic subjects. However, differences found between progressing myopes and emmetropes in the mean OPA levels and the decrease in OPA associated with accommodation suggested some changes in IOP dynamics associated with myopia.
Resumo:
Falling represents a health risk for lower limb amputees fitted with an osseointegrated fixation mainly because of the potential damage to the fixation. The purpose of this study was to characterise a real forward fall that occurred inadvertently to a transfemoral amputee fitted with an osseointegrated fixation while attending a gait measurement session to assess the load applied on the residuum. The objective was to analyse the load applied on the fixation with an emphasis on the sequence of events, the pattern and the magnitude of the forces and moments. The load was measured directly at 200 Hz using a six-channel transducer. Complementary video footage was also studied. The fall was divided into four phases: loading (240 ms), descent (620 ms), impact (365 ms) and recovery (2495 ms). The main impact forces and moments occurred 870 ms and 915 ms after the heel contact, and corresponded to 133 %BW and 17 %BWm, or 1.2 and 11.2 times the maximum forces and moments applied during the previous steps of the participant, respectively. This study provided key information to engineers and clinicians facing the challenge to design equipment, and rehabilitation and exercise programs to restore safely the locomotion of lower limb amputees.
Resumo:
Early and rich conversations with a range of stakeholders – academics, professionals and graduates in their early years of practice – quickly clarified that the singular challenge for most parties centres on the ways in which courses prepare graduates for the pace, diversity and flux of contemporary professional practice.---------In pursuing understanding of this central challenge this study has focused on new graduates in BED disciplines by canvassing their views and those of two other major stakeholder groups (academic staff and professional practitioners in the disciplines studied). The first crucial years of a young graduate’s life in the workforce are shaped by a number of factors including the quality of the transition-to-work experience. The quality of this life-shaping transition is dependent on a range of factors including the ways in which graduates are educated in universities, their personal developmental characteristics and those of the professional people around them and the preparedness of workplaces and other professional groups to guide new recruits through the transition experience. This study makes recommendations about how the variations in transition experience, resulting from the vagaries of all these factors across a range of worksites, may be better understood, perhaps normalised, and, at least, supported. . Early and rich conversations with a range of stakeholders – academics, professionals and graduates in their early years of practice – quickly clarified that the singular challenge for most parties centres on the ways in which courses prepare graduates for the pace, diversity and flux of contemporary professional practice. The study proceeded through literature review, focus group interviews, national online survey and workshops. Through all these methods a number of challenges and factors essential to the transition experience, and the quality of education which precedes it, were identified. Firstly the study found further evidence of the importance of higher-order graduate capabilities, namely, the development of judgment, critical enquiry and strategic thinking. Alongside these capabilities the importance of the development of emotional intelligence, particularly interpersonal and social skills, was stressed by all stakeholders. At the time of writing the global economic crisis was providing challenges to the sector and its young graduates. This phenomenon proved the value of the development of resilience and persistence in graduates, the education system was called upon by all stakeholders as a place where the future-proofing of neophytes would ensure that the unknown challenges of the future could also be confronted. The study found that the challenges of transition to work are best supported by authentic undergraduate experiences both on and off campus, inside and outside classrooms, and that commencing professional life is made easier for new graduates when university courses and workplace settings develop, sustain and support high standards and high expectations of students. All these findings indicate the importance of stakeholder expectations, roles and responsibilities in respect of the transition-to-work experience. Whilst full agreement about how these things should occur is not necessary, a process (amongst stakeholders) which seeks value alignment around transition through discussion, debate and agenda-setting would probably assist to address what is seen as a major challenge in built environment and design education.
Resumo:
Objectives: This paper sought to identify the behaviour change targets for an injury prevention program; Skills for Preventing Injury in Youth, SPIY. The aim was to explore how such behaviours could subsequently be implemented and evaluated in the program. Methods and Design: The quantitative procedure involved a survey with 267 Year 8 and 9 students (mean age 13.23 years) regarding their engagement in risk-taking behaviours that may lead to injury. The qualitative study involved 30 students aged 14 to 17 years reporting their experiences of injury and risk-taking. Results: Injury risk behaviours co-occurred among three-quarters of those who reported engaging in any alcohol use or transport or violence related injury risk behaviour. Students described in detail some of these experiences. Conclusions: The selection process of identifying target behaviours for change for an injury prevention program is described. Adolescents’ description of such risk behaviours can inform the process of operationalising and contextualising program content and deciding on evaluation methodology. The design of an effective injury prevention program involves considerable preparatory work and this paper was able to describe the process of identifying the behavioural targets for change that can be operationalised and evaluated in the injury prevention program, SPIY.
Resumo:
The complex relationship between the hydrodynamic environment and surrounding tissues directly impacts on the design and production of clinically useful grafts and implants. Tissue engineers have generally seen bioreactors as 'black boxes' within which tissue engineering constructs (TECs) are cultured. It is accepted that a more detailed description of fluid mechanics and nutrient transport within process equipment can be achieved by using computational fluid dynamics (CFD) technology. This review discusses applications of CFD for tissue engineering-related bioreactors -- fluid flow processes have direct implications on cellular responses such as attachment, migration and proliferation. We conclude that CFD should be seen as an invaluable tool for analyzing and visualizing the impact of fluidic forces and stresses on cells and TECs.
Resumo:
In the late 1990s New Zealand fashion gained some international recognition for its dark edginess and intellectual connection due to its colonial past (Molloy, 2004). In the years since, this momentum seems to have dissipated as local fashion companies have followed a global trend towards inexpensive off shore manufacturing. The transfer of the making of garments to overseas workers appears to have resulted in a local fashion scene where many garments look the same in style, colour, cut and fit. The excitement of the past, where the majority of fashion designers established their own individuality through the cut and shape of the garments that they produced, may have been inadvertently lost. Consequently a sustainable New Zealand fashion and manufacturing industry, with design integrity, seems further out of reach. The first question posed by this research project is, ‘can the design and manufacture of a fashion garment, bearing in mind certain economic and practical restrictions at its inception, result in the development of a distinctive ‘look’ or ‘handwriting’?’ Second, through development of a collection of prototypes, can potential garments be created to be sustainably manufactured in New Zealand?
Resumo:
SCAPE is an interactive simulation that allows teachers and students to experiment with sustainable urban design. The project is based on the Kelvin Grove Urban Village, Brisbane. Groups of students role play as political, retail, elderly, student, council and builder characters to negotiate on game decisions around land use, density, housing types and transport in order to design a sustainable urban community. As they do so, the 3D simulation reacts in real time to illustrate what the village would look like as well as provide statistical information about the community they are creating. SCAPE brings together education, urban professional and technology expertise, helping it achieve educational outcomes, reflect real-world scenarios and include sophisticated logic and decision making processes and effects.---------- The research methodology was primarily practice led underpinned by action research methods resulting in innovative approaches and techniques in adapting digital games and simulation technologies to create dynamic and engaging experiences in pedagogical contexts. It also illustrates the possibilities for urban designers to engage a variety of communities in the processes, complexities and possibilities of urban development and sustainability.
What are students' understandings of how digital tools contribute to learning in design disciplines?
Resumo:
Building Information Modelling (BIM) is evolving in the Construction Industry as a successor to CAD. CAD is mostly a technical tool that conforms to existing industry practices, however BIM has the capacity to revolutionise industry practice. Rather than producing representations of design intent, BIM produces an exact Virtual Prototype of any building that in an ideal situation is centrally stored and freely exchanged between the project team, facilitating collaboration and allowing experimentation in design. Exposing design students to this technology through their formal studies allows them to engage with cutting edge industry practices and to help shape the industry upon their graduation. Since this technology is relatively new to the construction industry, there are no accepted models for how to “teach” BIM effectively at university level. Developing learning models to enable students to make the most out of their learning with BIM presents significant challenges to those teaching in the field of design. To date there are also no studies of students experiences of using this technology. This research reports on the introduction of Building Information Modeling (BIM) software into a second year Bachelor of Design course. This software has the potential to change industry standards through its ability to revolutionise the work practices of those involved in large scale design projects. Students’ understandings and experiences of using the software in order to complete design projects as part of their assessment are reported here. In depth semi-structured interviews with 6 students revealed that students had views that ranged from novice to sophisticate about the software. They had variations in understanding of how the software could be used to complete course requirements, to assist with the design process and in the workplace. They had engaged in limited exploration of the collaborative potential of the software as a design tool. Their understanding of the significance of BIM for the workplace was also variable. The results indicate that students are beginning to develop an appreciation for how BIM could aid or constrain the work of designers, but that this appreciation is highly varied and likely to be dependent on the students’ previous experiences of working in a design studio environment. Their range of understandings of the significance of the technology is a reflection of their level of development as designers (they are “novice” designers). The results also indicate that there is a need for subjects in later years of the course that allow students to specialise in the area of digital design and to develop more sophisticated views of the role of technology in the design process. There is also a need to capitalise on the collaborative potential inherent in the software in order to realise its capability to streamline some aspects of the design process. As students become more sophisticated designers we should explore their understanding of the role of technology as a design tool in more depth in order to make recommendations for improvements to teaching and learning practice related to BIM and other digital design tools.
Resumo:
This paper presents a retrospective view of a game design practice that recently switched from the development of complex learning games to the development of simple authoring tools for students to design their own learning games for each other. We introduce how our ‘10% Rule’, a premise that only 10% of what is learnt during a game design process is ultimately appreciated by the player, became a major contributor to the evolving practice. We use this rule primarily as an analytical and illustrative tool to discuss the learning involved in designing and playing learning games rather than as a scientifically and empirically proven rule. The 10% rule was promoted by our experience as designers and allows us to explore the often overlooked and valuable learning processes involved in designing learning games and mobile games in particular. This discussion highlights that in designing mobile learning games, students are not only reflecting on their own learning processes through setting up structures for others to enquire and investigate, they are also engaging in high-levels of independent inquiry and critical analysis in authentic learning settings. We conclude the paper with a discussion of the importance of these types of learning processes and skills of enquiry in 21st Century learning.
Resumo:
In order to develop scientific literacy students need the cognitive tools that enable them to read and evaluate science texts. One cognitive tool that has been widely used in science education to aid the development of conceptual understanding is concept mapping. However, it has been found some students experience difficulty with concept map construction. This study reports on the development and evaluation of an instructional sequence that was used to scaffold the concept-mapping process when middle school students who were experiencing difficulty with science learning used concept mapping to summarise a chapter of a science text. In this study individual differences in working memory functioning are suggested as one reason that students experience difficulty with concept map construction. The study was conducted using a design-based research methodology in the school’s learning support centre. The analysis of student work samples collected during the two-year study identified some of the difficulties and benefits associated with the use of scaffolded concept mapping with these students. The observations made during this study highlight the difficulty that some students experience with the use of concept mapping as a means of developing an understanding of science concepts and the amount of instructional support that is required for such understanding to develop. Specifically, the findings of the study support the use of multi-component, multi-modal instructional techniques to facilitate the development of conceptual understanding with students who experience difficulty with science learning. In addition, the important roles of interactive dialogue and metacognition in the development of conceptual understanding are identified.
Resumo:
The rise of the ‘practice-led’ research approach has given us a new way of understanding what creative practice in art, design and media can do in the academy and the world— it can materialise new ideas and forms into being as a form of experimental research. Yet, to date, attention around the world, and especially in Australia, has been chiefly directed at the postgraduate research degrees, most notably the PhD or doctoral equivalents. Recent mapping projects and surveys of practice-led research in Australia reveal much about the institutional conditions of higher degree researchers, supervisors, examiners and research training (Baker et al 2009; Evans et al 2003; Dally et al 2004; Paltridge et al 2009; Phillips et al 2009). Given this focus, we might well ask: is the practice-led approach destined to be a part of the higher degree ghetto only, or does it have an afterlife? What is the place of ‘practice-led’ beyond the postgraduate degree? After all postgraduate researchers do not remain postgraduates forever, and perhaps the practice-led approach to research may have benefits in wider university, professional and communal contexts.