897 resultados para Langmuir-Blodgett technique


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dual beam thermal lens tecbnique is successfully employed for the determination of absolute Fluorescence quantum yield of rhodamine 6G lnser dye in different solvents. A 532 nm radiation from a Q-switched Nd:YAG laser was used for the excitation purpose. The fluorescence quantum yield values are found to be strongly influenced by environmental effects. It has been observed that fluorescence yield is greater for rhodamine 6G in ethylene glycol system than in water or in methanol. Our results also indicate that parameters like concentration of the dye solution, aggregate formation and excited state absorption affect the absolute values of fluorescence yield significantly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-photon absorption in Rhodamine 6G using the second harmonic of a pulsed Q-switched Nd:YAG laser has been studied by photoacoustic technique. It is observed that there is a competition between one-photon and two-photon absorption processes. At lower concentration the two-photon process is predominant over the one-photon process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we report the use of a laser induced phoroacoustic technique for the detection of multiple phase transitions in heptyl-oxy-cyanobiphenyl (70CB) and octyl-oxy-cyanobiphenyl (80CB) liquid crystals. The observed photoacoustic signal amplitude profile carries clear signatures of two tirst order transitions in 70CB and two tirst order and a second order transitions in 80CB. Analysis of the experimental data using Rosencwaig-Gersho theory shows that the sudden decrease in the photoacoustic (PA) signal amplitude during phase transitions is due to a sharp increase in the heat capacity of the samples near the transition temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental method for measuring photoacoustic(PA) signals generated by a pulsed laser beam in liquids is described. The pulsed PA technique is found to be a convenient and accurate method for determination of quantum yield in fluorescent dye solutions. Concentration dependence of quantum yield of rhodamine 6G in water is studied using the above method. The results indicate that the quantum yield decreases with increase in concentration in the quenching region in agreement with the existing reports based on radiometric measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The acoustic signals generated in solids due to interaction with pulsed laser beam is used to determine the ablation threshold of bulk polymer samples of teflon (polytetrafluoroethylene) and nylon under the irradiation from a Q-switched Nd:YAG laser at 1.06µm wavelength. A suitably designed piezoelectric transducer is employed for the detection of photoacoustic (PA) signals generated in this process. It has been observed that an abrupt increase in the amplitude of the PA signal occurs at the ablation threshold. Also there exist distinct values for the threshold corresponding to different mechanisms operative in producing damages like surface morphology, bond breaking and melting processes at different laser energy densities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work. Sub-micrometre thick CulnSe2 films were prepared using different techniques viz, selenization through chemically deposited Selenium and Sequential Elemental Evaporation. These methods are simpler than co-evaporation technique, which is known to be the most suitable one for CulnSe2 preparation. The films were optimized by varying the composition over a wide range to find optimum properties for device fabrication. Typical absorber layer thickness of today's solar cell ranges from 2-3m. Thinning of the absorber layer is one of the challenges to reduce the processing time and material usage, particularly of Indium. Here we made an attempt to fabricate solar cell with absorber layer of thickness

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of the present study is to understand different mechanisms involved in the production and evolution of plasma by the pulsed laser ablation and radio frequency magnetron sputtering. These two methods are of particular interest, as these are well accomplished methods used for surface coatings, nanostructure fabrications and other thin film devices fabrications. Material science researchers all over the world are involved in the development of devices based on transparent conducting oxide (TCO) thin films. Our laboratory has been involved in the development of TCO devices like thin film diodes using zinc oxide (ZnO) and zinc magnesium oxide (ZnMgO), thin film transistors (TFT's) using zinc indium oxide and zinc indium tin oxide, and some electroluminescent (EL) devices by pulsed laser ablation and RF magnetron sputtering.In contrast to the extensive literature relating to pure ZnO and other thin films produced by various deposition techniques, there appears to have been relatively little effort directed towards the characterization of plasmas from which such films are produced. The knowledge of plasma dynamics corresponding to the variations in the input parameters of ablation and sputtering, with the kind of laser/magnetron used for the generation of plasma, is limited. To improve the quality of the deposited films for desired application, a sound understanding of the plume dynamics, physical and chemical properties of the species in the plume is required. Generally, there is a correlation between the plume dynamics and the structural properties of the films deposited. Thus the study of the characteristics of the plume contributes to a better understanding and control of the deposition process itself. The hydrodynamic expansion of the plume, the composition, and SIze distribution of clusters depend not only on initial conditions of plasma production but also on the ambient gas composition and pressure. The growth and deposition of the films are detennined by the thermodynamic parameters of the target material and initial conditions such as electron temperature and density of the plasma.For optimizing the deposition parameters of various films (stoichiometric or otherwise), in-situ or ex-situ monitoring of plasma plume dynamics become necessary for the purpose of repeatability and reliability. With this in mind, the plume dynamics and compositions of laser ablated and RF magnetron sputtered zinc oxide plasmas have been investigated. The plasmas studied were produced at conditions employed typically for the deposition of ZnO films by both methods. Apart from this two component ZnO plasma, a multi-component material (lead zirconium titanate) was ablated and plasma was characterized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laser‐induced damage and ablation thresholds of bulk superconducting samples of Bi2(SrCa)xCu3Oy(x=2, 2.2, 2.6, 2.8, 3) and Bi1.6 (Pb)xSr2Ca2Cu3 Oy (x=0, 0.1, 0.2, 0.3, 0.4) for irradiation with a 1.06 μm beam from a Nd‐YAG laser have been determined as a function of x by the pulsed photothermal deflection technique. The threshold values of power density for ablation as well as damage are found to increase with increasing values of x in both systems while in the Pb‐doped system the threshold values decrease above a specific value of x, coinciding with the point at which the Tc also begins to fall.  

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Irradiation of a Polymethyl methacrylate target using a pulsed Nd-YAG laser causes plasma formation in the vicinity of the target. The refractive index gradient due to the presence of the plasma is probed using phase-shift detection technique. The phase-shift technique is a simple but sensitive technique for the determination of laser ablation threshold of solids. The number density of laser generated plasma above the ablation threshold from Polymethyl methacrylate is calculated as a function of laser fluence. The number density varies from 2×1016 cm-3 to 2×1017 cm-3 in the fluence interval 2.8-13 J · cm-2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fluorescence spectrum of the schiff base obtained from salicylaldehyde and 2-aminophenol is studied using an argon-ion laser as the excitation source and its fluorescence quantum yield (Qf) is determined using a thermal lens method. This is a nondestructive technique that gives the absolute value of Qf without the need for a fluorescence standard. The quantum-yield values are calculated for various concentrations of the solution in chloroform and also for various excitation wavelengths. The value of Qf is relatively high, and is concentration dependent. The maximum value of Qf obtained is nearly 0.78. The high value of the fluorescence quantum yield will render the schiff base useful as a fluorescent marker for biological applications. Photostability and gain studies will assess its suitability as a laser dye.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dual beam transient thermal lens studies were carried out in rhodamine 6G methanol solutions using 532 nm pulses from a frequency doubled Nd:YAG laser. Analysis of thermal lens signal shows the existence of different nonlinear processes like two photon absorption and three photon absorption phenomena along with one photon absorption. Concentration of the dye in the solution has been found to influence the occurrence of the different processes in a significant way.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal diffusivity (TD) measurements were performed on some industrially important dyes – auramine O (AO), malachite green and methylene blue (MB) – adsorbed K-10 montmorillonites using photoacoustic method. The TD value for the dye-adsorbed clay mineral was observed to change with a variation in dye concentration. The contribution of the dye towards TD was also determined. The repeatedly adsorbed samples with MB and AO exhibited a lower TD than the single-adsorbed samples. TD values of sintered MB samples were also obtained experimentally. These sintered samples exhibit a higher TD, although they show a trend similar to that of non-sintered pellets. A variation in dye concentration and sintering temperature can be used for tuning the TD value of the clay mineral to the desired level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photothermal deflection technique was used for determining the laser damage threshold of polymer samples of teflon (PTFE) and nylon. The experiment was conducted using a Q-switched Nd-YAG laser operating at its fundamental wavelength (1-06μm, pulse width 10 nS FWHM) as irradiation source and a He-Ne laser as the probe beam, along with a position sensitive detector. The damage threshold values determined by photothermal deflection method were in good agreement with those determined by other methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pulsed photoacoustic measurements have been carried out in liquid CS2 using 532 nm radiation from a frequency doubled Nd:YAG laser. Variation of signal amplitude with laser fluence clearly indicates the role of multiphoton processes in the generation of photoacoustic effect. It is also shown that four photon induced dissociation and five photon induced ionization are likely processes in CS2 and 532 nm radiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laser ablation processes in liquid benzene, toluene and carbon disulphide have been investigated by pulsed photoacoustic technique using 532 nm radiation from a frequency doubled Q-switched Nd:YAG laser. The nature of variation of photoacoustic signal amplitude with laser energy clearly indicates that different phenomena are involved in the generation of photoacoustic effect and these are discussed in detail. Our results suggest multiphoton induced photofragmentation as the most plausible interaction process occurring during laser ablation in these liquids.