976 resultados para Inside-Outside Algorithm
Resumo:
The time division multiple access (TDMA) based channel access mechanisms perform better than the contention based channel access mechanisms, in terms of channel utilization, reliability and power consumption, specially for high data rate applications in wireless sensor networks (WSNs). Most of the existing distributed TDMA scheduling techniques can be classified as either static or dynamic. The primary purpose of static TDMA scheduling algorithms is to improve the channel utilization by generating a schedule of smaller length. But, they usually take longer time to schedule, and hence, are not suitable for WSNs, in which the network topology changes dynamically. On the other hand, dynamic TDMA scheduling algorithms generate a schedule quickly, but they are not efficient in terms of generated schedule length. In this paper, we propose a novel scheme for TDMA scheduling in WSNs, which can generate a compact schedule similar to static scheduling algorithms, while its runtime performance can be matched with those of dynamic scheduling algorithms. Furthermore, the proposed distributed TDMA scheduling algorithm has the capability to trade-off schedule length with the time required to generate the schedule. This would allow the developers of WSNs, to tune the performance, as per the requirement of prevalent WSN applications, and the requirement to perform re-scheduling. Finally, the proposed TDMA scheduling is fault-tolerant to packet loss due to erroneous wireless channel. The algorithm has been simulated using the Castalia simulator to compare its performance with those of others in terms of generated schedule length and the time required to generate the TDMA schedule. Simulation results show that the proposed algorithm generates a compact schedule in a very less time.
Resumo:
Today single cell research is a great interest to analyze cell to cell or cell to environment behavior with their intracellular compounds, where bulk measurement can provide average value. To deliver biomolecules precise and localized way into single living cell with high transfection rate and high cell viability is a challenging and promisible task for biological and therapeutic research. In this report, we present a nano-localized single cell nano-electroporation technique, where electroporation take place in a very precise and localized area on a single cell membrane to achieve high efficient delivery with high cell viability. We fabricated 60nm gap with 40 nm triangular Indium Tin Oxide (ITO) based nano-eletcrode tip, which can intense electric field in a nano-localized area of a single cell to permeabilize cell membrane and deliver exogenous biomolecules from outside to inside of the cell. This device successfully deliver dyes, proteins into single cell with high cell viability (98%). The process not only control precise delivery mechanism into single cell with membrane reversibility, but also it can provide special, temporal and qualitative dosage control, which might be beneficial for therapeutic and biological cell studies.
Resumo:
In structured output learning, obtaining labeled data for real-world applications is usually costly, while unlabeled examples are available in abundance. Semisupervised structured classification deals with a small number of labeled examples and a large number of unlabeled structured data. In this work, we consider semisupervised structural support vector machines with domain constraints. The optimization problem, which in general is not convex, contains the loss terms associated with the labeled and unlabeled examples, along with the domain constraints. We propose a simple optimization approach that alternates between solving a supervised learning problem and a constraint matching problem. Solving the constraint matching problem is difficult for structured prediction, and we propose an efficient and effective label switching method to solve it. The alternating optimization is carried out within a deterministic annealing framework, which helps in effective constraint matching and avoiding poor local minima, which are not very useful. The algorithm is simple and easy to implement. Further, it is suitable for any structured output learning problem where exact inference is available. Experiments on benchmark sequence labeling data sets and a natural language parsing data set show that the proposed approach, though simple, achieves comparable generalization performance.
Resumo:
A new automatic algorithm for the assessment of mixed mode crack growth rate characteristics is presented based on the concept of an equivalent crack. The residual ligament size approach is introduced to implementation this algorithm for identifying the crack tip position on a curved path with respect to the drop potential signal. The automatic algorithm accounting for the curvilinear crack trajectory and employing an electrical potential difference was calibrated with respect to the optical measurements for the growing crack under cyclic mixed mode loading conditions. The effectiveness of the proposed algorithm is confirmed by fatigue tests performed on ST3 steel compact tension-shear specimens in the full range of mode mixities from pure mode Ito pure mode II. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The major challenges in Li-S batteries are the formation of soluble polysulphides during the reversible conversion of S-8 <-> Li2S, large changes in sulphur particle volume during lithiation and extremely poor charge transport in sulphur. We demonstrate here a novel and simple strategy to overcome these challenges towards practical realization of a stable high performance Li-S battery. For the first time, a strategy is developed which does away with the necessity of pre-fabricated high surface area hollow-structured adsorbates and also multiple nontrivial synthesis steps related to sulphur loading inside such adsorbates. A lithiated polyethylene glycol (PEG) based surfactant tethered on ultra-small sulphur nanoparticles and wrapped up with polyaniline (PAni) (abbreviated as S-MIEC) is demonstrated here as an exceptional cathode for Li-S batteries. The PEG and PAni network around the sulphur nanoparticles serves as an efficient flexible trap for sulphur and polysulphides and also provides distinct pathways for electrons (through PAni) and ions (through PEG) during battery operation. Contrary to the cathodes demonstrated based on various carbon-sulphur composites, the mixed conducting S-MIEC showed an extremely high loading of 75%. The S-MIEC exhibited a stable capacity of nearly 900 mA h g(-1) at the end of 100 cycles at a 1C current rate.
Resumo:
Support vector machines (SVM) are a popular class of supervised models in machine learning. The associated compute intensive learning algorithm limits their use in real-time applications. This paper presents a fully scalable architecture of a coprocessor, which can compute multiple rows of the kernel matrix in parallel. Further, we propose an extended variant of the popular decomposition technique, sequential minimal optimization, which we call hybrid working set (HWS) algorithm, to effectively utilize the benefits of cached kernel columns and the parallel computational power of the coprocessor. The coprocessor is implemented on Xilinx Virtex 7 field-programmable gate array-based VC707 board and achieves a speedup of upto 25x for kernel computation over single threaded computation on Intel Core i5. An application speedup of upto 15x over software implementation of LIBSVM and speedup of upto 23x over SVMLight is achieved using the HWS algorithm in unison with the coprocessor. The reduction in the number of iterations and sensitivity of the optimization time to variation in cache size using the HWS algorithm are also shown.
Resumo:
Speech polarity detection is a crucial first step in many speech processing techniques. In this paper, an algorithm is proposed that improvises the existing technique using the skewness of the voice source (VS) signal. Here, the integrated linear prediction residual (ILPR) is used as the VS estimate, which is obtained using linear prediction on long-term frames of the low-pass filtered speech signal. This excludes the unvoiced regions from analysis and also reduces the computation. Further, a modified skewness measure is proposed for decision, which also considers the magnitude of the skewness of the ILPR along with its sign. With the detection error rate (DER) as the performance metric, the algorithm is tested on 8 large databases and its performance (DER=0.20%) is found to be comparable to that of the best technique (DER=0.06%) on both clean and noisy speech. Further, the proposed method is found to be ten times faster than the best technique.
Resumo:
Purpose: A prior image based temporally constrained reconstruction ( PITCR) algorithm was developed for obtaining accurate temperature maps having better volume coverage, and spatial, and temporal resolution than other algorithms for highly undersampled data in magnetic resonance (MR) thermometry. Methods: The proposed PITCR approach is an algorithm that gives weight to the prior image and performs accurate reconstruction in a dynamic imaging environment. The PITCR method is compared with the temporally constrained reconstruction (TCR) algorithm using pork muscle data. Results: The PITCR method provides superior performance compared to the TCR approach with highly undersampled data. The proposed approach is computationally expensive compared to the TCR approach, but this could be overcome by the advantage of reconstructing with fewer measurements. In the case of reconstruction of temperature maps from 16% of fully sampled data, the PITCR approach was 1.57x slower compared to the TCR approach, while the root mean square error using PITCR is 0.784 compared to 2.815 with the TCR scheme. Conclusions: The PITCR approach is able to perform more accurate reconstructions of temperature maps compared to the TCR approach with highly undersampled data in MR guided high intensity focused ultrasound. (C) 2015 American Association of Physicists in Medicine.
Resumo:
An efficient density matrix renormalization group (DMRG) algorithm is presented and applied to Y junctions, systems with three arms of n sites that meet at a central site. The accuracy is comparable to DMRG of chains. As in chains, new sites are always bonded to the most recently added sites and the superblock Hamiltonian contains only new or once renormalized operators. Junctions of up to N = 3n + 1 approximate to 500 sites are studied with antiferromagnetic (AF) Heisenberg exchange J between nearest-neighbor spins S or electron transfer t between nearest neighbors in half-filled Hubbard models. Exchange or electron transfer is exclusively between sites in two sublattices with N-A not equal N-B. The ground state (GS) and spin densities rho(r) = < S-r(z)> at site r are quite different for junctions with S = 1/2, 1, 3/2, and 2. The GS has finite total spin S-G = 2S(S) for even (odd) N and for M-G = S-G in the S-G spin manifold, rho(r) > 0(< 0) at sites of the larger (smaller) sublattice. S = 1/2 junctions have delocalized states and decreasing spin densities with increasing N. S = 1 junctions have four localized S-z = 1/2 states at the end of each arm and centered on the junction, consistent with localized states in S = 1 chains with finite Haldane gap. The GS of S = 3/2 or 2 junctions of up to 500 spins is a spin density wave with increased amplitude at the ends of arms or near the junction. Quantum fluctuations completely suppress AF order in S = 1/2 or 1 junctions, as well as in half-filled Hubbard junctions, but reduce rather than suppress AF order in S = 3/2 or 2 junctions.
Resumo:
The irradiation of selective regions in a polymer gel dosimeter results in an increase in optical density and refractive index (RI) at those regions. An optical tomography-based dosimeter depends on rayline path through the dosimeter to estimate and reconstruct the dose distribution. The refraction of light passing through a dose region results in artefacts in the reconstructed images. These refraction errors are dependant on the scanning geometry and collection optics. We developed a fully 3D image reconstruction algorithm, algebraic reconstruction technique-refraction correction (ART-rc) that corrects for the refractive index mismatches present in a gel dosimeter scanner not only at the boundary, but also for any rayline refraction due to multiple dose regions inside the dosimeter. In this study, simulation and experimental studies have been carried out to reconstruct a 3D dose volume using 2D CCD measurements taken for various views. The study also focuses on the effectiveness of using different refractive-index matching media surrounding the gel dosimeter. Since the optical density is assumed to be low for a dosimeter, the filtered backprojection is routinely used for reconstruction. We carry out the reconstructions using conventional algebraic reconstruction (ART) and refractive index corrected ART (ART-rc) algorithms. The reconstructions based on FDK algorithm for cone-beam tomography has also been carried out for comparison. Line scanners and point detectors, are used to obtain reconstructions plane by plane. The rays passing through dose region with a RI mismatch does not reach the detector in the same plane depending on the angle of incidence and RI. In the fully 3D scanning setup using 2D array detectors, light rays that undergo refraction are still collected and hence can still be accounted for in the reconstruction algorithm. It is found that, for the central region of the dosimeter, the usable radius using ART-rc algorithm with water as RI matched medium is 71.8%, an increase of 6.4% compared to that achieved using conventional ART algorithm. Smaller diameter dosimeters are scanned with dry air scanning by using a wide-angle lens that collects refracted light. The images reconstructed using cone beam geometry is seen to deteriorate in some planes as those regions are not scanned. Refraction correction is important and needs to be taken in to consideration to achieve quantitatively accurate dose reconstructions. Refraction modeling is crucial in array based scanners as it is not possible to identify refracted rays in the sinogram space.
Resumo:
We develop a new dictionary learning algorithm called the l(1)-K-svp, by minimizing the l(1) distortion on the data term. The proposed formulation corresponds to maximum a posteriori estimation assuming a Laplacian prior on the coefficient matrix and additive noise, and is, in general, robust to non-Gaussian noise. The l(1) distortion is minimized by employing the iteratively reweighted least-squares algorithm. The dictionary atoms and the corresponding sparse coefficients are simultaneously estimated in the dictionary update step. Experimental results show that l(1)-K-SVD results in noise-robustness, faster convergence, and higher atom recovery rate than the method of optimal directions, K-SVD, and the robust dictionary learning algorithm (RDL), in Gaussian as well as non-Gaussian noise. For a fixed value of sparsity, number of dictionary atoms, and data dimension, l(1)-K-SVD outperforms K-SVD and RDL on small training sets. We also consider the generalized l(p), 0 < p < 1, data metric to tackle heavy-tailed/impulsive noise. In an image denoising application, l(1)-K-SVD was found to result in higher peak signal-to-noise ratio (PSNR) over K-SVD for Laplacian noise. The structural similarity index increases by 0.1 for low input PSNR, which is significant and demonstrates the efficacy of the proposed method. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we present two new stochastic approximation algorithms for the problem of quantile estimation. The algorithms uses the characterization of the quantile provided in terms of an optimization problem in 1]. The algorithms take the shape of a stochastic gradient descent which minimizes the optimization problem. Asymptotic convergence of the algorithms to the true quantile is proven using the ODE method. The theoretical results are also supplemented through empirical evidence. The algorithms are shown to provide significant improvement in terms of memory requirement and accuracy.
Resumo:
Signals recorded from the brain often show rhythmic patterns at different frequencies, which are tightly coupled to the external stimuli as well as the internal state of the subject. In addition, these signals have very transient structures related to spiking or sudden onset of a stimulus, which have durations not exceeding tens of milliseconds. Further, brain signals are highly nonstationary because both behavioral state and external stimuli can change on a short time scale. It is therefore essential to study brain signals using techniques that can represent both rhythmic and transient components of the signal, something not always possible using standard signal processing techniques such as short time fourier transform, multitaper method, wavelet transform, or Hilbert transform. In this review, we describe a multiscale decomposition technique based on an over-complete dictionary called matching pursuit (MP), and show that it is able to capture both a sharp stimulus-onset transient and a sustained gamma rhythm in local field potential recorded from the primary visual cortex. We compare the performance of MP with other techniques and discuss its advantages and limitations. Data and codes for generating all time-frequency power spectra are provided.
Resumo:
Among the multiple advantages and applications of remote sensing, one of the most important uses is to solve the problem of crop classification, i.e., differentiating between various crop types. Satellite images are a reliable source for investigating the temporal changes in crop cultivated areas. In this letter, we propose a novel bat algorithm (BA)-based clustering approach for solving crop type classification problems using a multispectral satellite image. The proposed partitional clustering algorithm is used to extract information in the form of optimal cluster centers from training samples. The extracted cluster centers are then validated on test samples. A real-time multispectral satellite image and one benchmark data set from the University of California, Irvine (UCI) repository are used to demonstrate the robustness of the proposed algorithm. The performance of the BA is compared with two other nature-inspired metaheuristic techniques, namely, genetic algorithm and particle swarm optimization. The performance is also compared with the existing hybrid approach such as the BA with K-means. From the results obtained, it can be concluded that the BA can be successfully applied to solve crop type classification problems.
Resumo:
An Nd:glass laser pulse (18 ns, 1.38 J) is focused in a tiny area of about 100-mum diam under ambient conditions to produce micro-shock waves. The laser is focused above a planar surface with a typical standoff distance of about 4 mm, The laser energy is focused inside a supersonic circular jet of carbon dioxide gas produced by a nozzle with internal diameter of 2.9 mm and external diameter of 8 mm, Nominal value of the Mach number of the jet is around 2 with the corresponding pressure ratio of 7.5 (stagnation pressure/static pressure at the exit of the nozzle), The interaction process of the micro-shock wave generated inside the supersonic jet with the plane wall is investigated using double-pulse holographic interferometry. A strong surface vortex field with subsequent generation of a side jet propagating outward along the plane wail is observed. The interaction of the micro-shock wave with the cellular structure of the supersonic jet does not seem to influence the near surface features of the flowfield. The development of the coherent structures near the nozzle exit due to the upstream propagation of pressure waves seems to be affected by the outward propagating micro-shock wave. Mach reflection is observed when the micro-shock wave interacts with the plane wall at a standoff distance of 4 mm, The Mach stem is slightly deflected, indicating strong boundary-layer and viscous effects near the wall. The interaction process is also simulated numerically using an axisymmetric transient laminar Navier-Stokes solver. Qualitative agreement between experimental and numerical results is good.