986 resultados para Equity raw-score matrix (ERSM)
Resumo:
A survey of processing hygiene in the Sri Lankan prawn industry has shown that the incoming raw material has extremely high bacterial loadings; about 50% of samples analysed had a total count in excess of 10,000,000/g. Although beheading reduces the count, ineffective temperature control during processing means that the final total count of raw, shell-on, P.U.D. and P.A.D. prawns, as well as cooked prawns, is in excess of 1,000,000/g. - the maximum level specified by many importing countries.
Resumo:
An experiment was undertaken in which silver bellies (Leiognathus splendens) of different quality were used to produce silages using different concentrations of hydrochloric acid and formic acid. The quality and storage life of the various preparations are reported. Silages which keep for at least 30 days can be produced from silver belly held for 3 or 12 hours at 28°C by: 1) reducing the pH by addition of hydrochloric acid; 2) adding 0.5% formic acid and reducing the pH to 3.5 with hydrochloric acid; or 3) adding 2.5% formic acid.
Resumo:
The wastage of prawns due to spoilage in processing factories accounted to about 0-12% in 1974, 0-35% in 1975, 0-3% in 1976 and 0-4% in 1977. Spoilage increases with the time lag between catching and processing and also due to defective icing. The paper discusses the counts of whole prawns required for obtaining meat of specified size grades.
Resumo:
Over the past 15 years of its development, the fish processing industry in India has shown considerable improvement in maintenance of hygiene during handling of the raw material, processing and marketing of the finished product. This is best manifested in the lowering of upper limits of bacterial loads in factory environs and in processed products (Pillai, 1971). More care and attention is given by the processors in recent years in the scientific cleaning and sanitizing of utensils and equipment, chlorination of water supplies and personnel hygiene. An example of sanitation score form is given to help scientists and technologists to evaluate the hygienic status of the processing units.
Resumo:
The total viable counts were estimated in one hundred and sixty five samples of raw, iced and frozen fish using incubation periods of 24, 48, 72 and 96h. For raw fish, 24h and for iced and frozen fish 48h incubation of the plates were found to be adequate. Variation between samples was significant at 1% level for raw iced and frozen samples.
Resumo:
The shrimp processing plants located at any particular place receive their raw material supplies from local and outside centres. The raw material received, the form in which it was received, the relative contribution by local and outside centres and the seasonal variation in the supplies were studied with respect to the shrimp processing plants located at three places - Cochin, Veraval and Kakinada.
Resumo:
Accumulating evidence suggests that unicellular Archezoa are the most primitive eukaryotes and their nuclei are of significance to the study of evolution of the eukaryotic nucleus. Nuclear matrix is an ubiquitous important structure of eukaryotic nucleus; its evolution is certainly one of the most important parts of the evolution of nucleus. To study the evolution of nuclear matrix, nuclear matrices of Archezoa are investigated. Giardia lamblia cells are extracted sequentially. Both embedment-free section EM and whole mount cell EM of the extracted cells show that, like higher eukaryotes, this species has a residual nuclear matrix in its nucleus and rich intermediate filaments in its cytoplasm, and the two networks connect with each other to form a united network. But its nuclear matrix does not have nucleolar matrix and its lamina is not as typical as that of higher eukaryotes; Western blotting shows that lamina of Giardia and two other Archezoa Entamoeba invadens and Trichomonas vaginali all contain only one polypeptide each which reacts with a mammalia anti-lamin polyclonal serum and is similar to lamin B (67 ku) of mammlia in molecular weight. According to the results and references, it is suggested that nuclear matrix is an early acquisition of the eukaryotic nucleus, and it and the "eukaryotic chromatin" as a whole must have originated very early in the process of evolution of eukaryotic cell, and their origin should be an important prerequisite of the origin of eukaryotic nucleus; in the iamin (gene) family, B-type lamins (gene) should be the ancestral type and that A-type lamins (gene) might derive therefrom.
Resumo:
Euglena gracilis cell was extracted sequentially with CSK-Triton buffer, RSB-Magik solution and DNase-As solution. DGD embedment-free electron microscopy showed that in the extracted nucleus there was a residual non-chromatin fibrous network. That it could not be removed by hot trichloroacetic acid further supported the idea that it was a non-histone, non-chromatin fibrous protein network, and should be the internal network of the nuclear matrix. After the sequential extraction, the nuclear membrane was removed, leaving behind a layer of lamina; the chromatin was digested and eluted from the dense chromosomes and residual chromosomal structures that should be chromosomal scaffold were revealed. Western blot analysis with antiserum against rat lamins showed that nuclear lamina of the cell possessed two positive polypeptides, a major one and a minor one, which had molecular masses similar to lamin B and lamin A, respectively. Comparing these data with those of the most primitive eukaryote Archezoa and of higher eukaryotes, it was suggested that the lower unicellular eukaryote E. gracillis already had the nuclear matrix structure, and its nuclear matrix (especially the lamina) might represent a stage of evolutionary history of the nuclear matrix. (C) 2000 Editions scientifiques et medicales Elsevier SAS.
Resumo:
Bone is a complex material with a hierarchical multi-scale organization from the molecule to the organ scale. The genetic bone disease, osteogenesis imperfecta, is primarily caused by mutations in the collagen type I genes, resulting in bone fragility. Because the basis of the disease is molecular with ramifications at the whole bone level, it provides a platform for investigating the relationship between structure, composition, and mechanics throughout the hierarchy. Prior studies have individually shown that OI leads to: 1. increased bone mineralization, 2. decreased elastic modulus, and 3. smaller apatite crystal size. However, these have not been studied together and the mechanism for how mineral structure influences tissue mechanics has not been identified. This lack of understanding inhibits the development of more accurate models and therapies. To address this research gap, we used a mouse model of the disease (oim) to measure these outcomes together in order to propose an underlying mechanism for the changes in properties. Our main finding was that despite increased mineralization, oim bones have lower stiffness that may result from the poorly organized mineral matrix with significantly smaller, highly packed and disoriented apatite crystals. Using a composite framework, we interpret the lower oim bone matrix elasticity observed as the result of a change in the aspect ratio of apatite crystals and a disruption of the crystal connectivity.
Resumo:
To investigate how substrate properties influence stem-cell fate, we cultured single human epidermal stem cells on polydimethylsiloxane (PDMS) and polyacrylamide (PAAm) hydrogel surfaces, 0.1 kPa-2.3 MPa in stiffness, with a covalently attached collagen coating. Cell spreading and differentiation were unaffected by polydimethylsiloxane stiffness. However, cells on polyacrylamide of low elastic modulus (0.5 kPa) could not form stable focal adhesions and differentiated as a result of decreased activation of the extracellular-signal-related kinase (ERK)/mitogen-activated protein kinase (MAPK) signalling pathway. The differentiation of human mesenchymal stem cells was also unaffected by PDMS stiffness but regulated by the elastic modulus of PAAm. Dextran penetration measurements indicated that polyacrylamide substrates of low elastic modulus were more porous than stiff substrates, suggesting that the collagen anchoring points would be further apart. We then changed collagen crosslink concentration and used hydrogel-nanoparticle substrates to vary anchoring distance at constant substrate stiffness. Lower collagen anchoring density resulted in increased differentiation. We conclude that stem cells exert a mechanical force on collagen fibres and gauge the feedback to make cell-fate decisions.