982 resultados para EPIGENETIC REGULATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The estrogen-dependent and tissue-specific regulation of the Xenopus laevis vitellogenin gene B1 promoter has been studied by lipid-mediated DNA transfer into Xenopus hepatocytes in primary culture. Hepatocytes achieve an efficient hormonal control of this promoter through a functional interaction between the estrogen responsive elements and a promoter proximal region upstream of the TATA box, which is characterized by a high density of binding sites for the transcription factors CTF/NF-1, C/EBP and HNF3. DNA accessibility to restriction enzymes within the chromosomal copy of the vitellogenin gene B1 promoter shows that the estrogen responsive unit and the promoter proximal region are sensitive to digestion in uninduced and estrogen-induced hepatocytes but not in erythrocyte nuclei. Together, these findings support the notion that chromatin configuration as well as the interplay of promoter elements mediate proper hormone-dependent and tissue-specific expression of the B1 vitellogenin gene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Allodynia (pain in response to normally non painful stimulation) and paresthesia (erroneous sensory experience) are two debilitating symptoms of neuropathic pain. These stem, at least partly, from profound changes in the non-nociceptive sensory pathway that comprises large myelinated neuronal afferents terminating in the gracile and cuneate nuclei. Further than neuronal changes, well admitted evidence indicates that glial cells (especially in the spinal cord) are key actors in neuropathic pain, in particular the possible alteration in astrocytic capacity to reuptake neurotransmitters (glutamate and GABA). Yet, the possibility of such a changed astrocytic scavenging capacity remains unexplored in the dorsal column pathway. The present study was therefore undertaken to assess whether peripheral nerve injury (spared nerve injury model, SNI) could trigger a glial reaction, and especially changes in glutamate and GABA transporters, in the gracile nucleus. SNI surgery was performed on male Sprague-Dawley rats. Seven days after surgery, rats were used for immunofluorescence (fixation and brain slicing), western-blot (fresh brain freezing and protein extraction) or GABA reuptake on synaptosomes. We found that SNI results in a profound glial reaction in the ipsilateral gracile nucleus. This reaction was characterized by an enhanced immunolabelling for microglial marker Iba1 as well as astrocytic protein GFAP (further confirmed by western-blot, p <0.05, n = 7). These changes were not observed in sham animals. Immunofluorescence and western-blot analysis shows that the GABA transporter GAT-1 is upregulated in the ipsilateral gracile nucleus (p <0.001; n = 7), with no detectable change in GAT-3 or glutamate transporters EAAT-1 and EAAT-2. Double immunoflurescence shows that GAT-1 and GFAP colocalize within the same cells. Furthermore, the upregulation of GFAP and GAT-1 were shown to occur all along the rostrocaudal axis of the gracile nucleus. Finally, synaptosomes from ipsilateral gracile nucleus show an increased capacity to reuptake GABA. Together, the data presented herein show that glial cells in the gracile nucleus react to neuropathic lesion, in particular through an upregulation of the GABA transporter GAT-1. Hence, this study points to role of an increased GABA transport in the dorsal column nuclei in neuropathic pain, calling attention to GAT-1 as a putative future pharmacological target to treat allodynia and paresthesia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Common variants at only two loci, FTO and MC4R, have been reproducibly associated with body mass index (BMI) in humans. To identify additional loci, we conducted meta-analysis of 15 genome-wide association studies for BMI (n > 32,000) and followed up top signals in 14 additional cohorts (n > 59,000). We strongly confirm FTO and MC4R and identify six additional loci (P < 5 x 10(-8)): TMEM18, KCTD15, GNPDA2, SH2B1, MTCH2 and NEGR1 (where a 45-kb deletion polymorphism is a candidate causal variant). Several of the likely causal genes are highly expressed or known to act in the central nervous system (CNS), emphasizing, as in rare monogenic forms of obesity, the role of the CNS in predisposition to obesity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rho GTPases regulate the actin cytoskeleton in all eukaryotes. Fission yeast Cdc42 is involved in actin cable assembly and formin For3 regulation. We isolated cdc42-879 as a thermosensitive strain with actin cable and For3 localization defects. In a multicopy suppressor screening, we identified pob1(+) as suppressor of cdc42-879 thermosensitivity. Pob1 overexpression also partially restores actin cables and localization of For3 in the mutant strain. Pob1 interacts with Cdc42 and this GTPase regulates Pob1 localization and/or stability. The C-terminal pleckstrin homology (PH) domain of Pob1 is required for Cdc42 binding. Pob1 also binds to For3 through its N-terminal sterile alpha motif (SAM) domain and contributes to the formin localization at the cell tips. The previously described pob1-664 mutant strain (Mol. Biol. Cell. 10, 2745-2757, 1999), which carries a mutation in the PH domain, as well as pob1 mutant strains in which Pob1 lacks the N-terminal region (pob1DeltaN) or the SAM domain (pob1DeltaSAM), have cytoskeletal defects similar to that of cdc42-879 cells. Expression of constitutively active For3DAD* partially restores actin organization in cdc42-879, pob1-664, pob1DeltaN, and pob1DeltaSAM. Therefore, we propose that Pob1 is required for For3 localization to the tips and facilitates Cdc42-mediated relief of For3 autoinhibition to stimulate actin cable formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acquisition of a mature dendritic morphology is critical for neural information processing. In particular, hepatocyte growth factor (HGF) controls dendritic arborization during brain development. However, the cellular mechanisms underlying the effects of HGF on dendritic growth remain elusive. Here, we show that HGF increases dendritic length and branching of rat cortical neurons through activation of the mitogen-activated protein kinase (MAPK) signaling pathway. Activation of MAPK by HGF leads to the rapid and transient phosphorylation of cAMP response element-binding protein (CREB), a key step necessary for the control of dendritic development by HGF. In addition to CREB phosphorylation, regulation of dendritic growth by HGF requires the interaction between CREB and CREB-regulated transcription coactivator 1 (CRTC1), as expression of a mutated form of CREB unable to bind CRTC1 completely abolished the effects of HGF on dendritic morphology. Treatment of cortical neurons with HGF in combination with brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family that regulates dendritic development via similar mechanisms, showed additive effects on MAPK activation, CREB phosphorylation and dendritic growth. Collectively, these results support the conclusion that regulation of cortical dendritic morphology by HGF is mediated by activation of the MAPK pathway, phosphorylation of CREB and interaction of CREB with CRTC1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physical and psychological stress cause different patterns of changes in the fluorescence intensity of nigral and tuberoinfundibular DA neurons which point to changes in neuronal activity. In order to investigate possible interactions between alpha-MSH (alpha-melanotropin) and DA systems in stress, systemic and intraventricular injections of antiserum against alpha-MSH were made. The functional state of DA neurons was assessed by histochemical microfluorimetry and hormone levels were measured by radioimmunossay. Antiserum against alpha-MSH was found to affect the functional state of DA neurons, but only thorugh the intravenous route. Under physical stress i.v. injection of antiserum against alpha-MSH was accompanied by elevated levels of activity of the DA neurons of the substantia nigra. An intraventricular injection of the same antiserum was ineffective. In psychological stress, an effect was again seen only after intravenous injection of antiserum against alpha-MSH. In this situation, the activity in DA cell groups of the substantia nigra, ventral tegmental area and tubero-infundibular system was increased after antiserum injection. Possible influences from manipulations were checked; certain effects which depended upon experimental situation were noted. Our data suggest a modulatory influence of circulating alpha-MSH on the functional state of central DA systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insults during the fetal period predispose the offspring to systemic cardiovascular disease, but little is known about the pulmonary circulation and the underlying mechanisms. Maternal undernutrition during pregnancy may represent a model to investigate underlying mechanisms, because it is associated with systemic vascular dysfunction in the offspring in animals and humans. In rats, restrictive diet during pregnancy (RDP) increases oxidative stress in the placenta. Oxygen species are known to induce epigenetic alterations and may cross the placental barrier. We hypothesized that RDP in mice induces pulmonary vascular dysfunction in the offspring that is related to an epigenetic mechanism. To test this hypothesis, we assessed pulmonary vascular function and lung DNA methylation in offspring of RDP and in control mice at the end of a 2-wk exposure to hypoxia. We found that endothelium-dependent pulmonary artery vasodilation in vitro was impaired and hypoxia-induced pulmonary hypertension and right ventricular hypertrophy in vivo were exaggerated in offspring of RDP. This pulmonary vascular dysfunction was associated with altered lung DNA methylation. Administration of the histone deacetylase inhibitors butyrate and trichostatin A to offspring of RDP normalized pulmonary DNA methylation and vascular function. Finally, administration of the nitroxide Tempol to the mother during RDP prevented vascular dysfunction and dysmethylation in the offspring. These findings demonstrate that in mice undernutrition during gestation induces pulmonary vascular dysfunction in the offspring by an epigenetic mechanism. A similar mechanism may be involved in the fetal programming of vascular dysfunction in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The central function of dendritic cells (DC) in inducing and preventing immune responses makes them ideal therapeutic targets for the induction of immunologic tolerance. In a rat in vivo model, we showed that dexamethasone-treated DC (Dex-DC) induced indirect pathway-mediated regulation and that CD4+CD25+ T cells were involved in the observed effects. The aim of the present study was to investigate the mechanisms underlying the acquired immunoregulatory properties of Dex-DC in the rat and human experimental systems. METHODS: After treatment with dexamethasone (Dex), the immunogenicity of Dex-DC was analyzed in T-cell proliferation and two-step hyporesponsiveness induction assays. After carboxyfluorescein diacetate succinimidyl ester labeling, CD4+CD25+ regulatory T-cell expansion was analyzed by flow cytometry, and cytokine secretion was measured by ELISA. RESULTS: In this study, we demonstrate in vitro that rat Dex-DC induced selective expansion of CD4+CD25+ regulatory T cells, which were responsible for alloantigen-specific hyporesponsiveness. The induction of regulatory T-cell division by rat Dex-DC was due to secretion of interleukin (IL)-2 by DC. Similarly, in human studies, monocyte-derived Dex-DC were also poorly immunogenic, were able to induce T-cell anergy in vitro, and expand a population of T cells with regulatory functions. This was accompanied by a change in the cytokine profile in DC and T cells in favor of IL-10. CONCLUSION: These data suggest that Dex-DC induced tolerance by different mechanisms in the two systems studied. Both rat and human Dex-DC were able to induce and expand regulatory T cells, which occurred in an IL-2 dependent manner in the rat system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study demonstrates that the expression of the phenol UDP-glucuronosyltransferase 1 gene (UGT1A1) is regulated at the transcriptional level by thyroid hormone in rat liver. Following 3,5, 3'-triiodo-L-thyronine (T3) stimulation in vivo, there is a gradual increase in the amount of UGT1A1 mRNA with maximum levels reached 24 h after treatment. In comparison, induction with the specific inducer, 3-methylcholanthrene (3-MC), results in maximal levels of UGT1A1 mRNA after 8 h of treatment. In primary hepatocyte cultures, the stimulatory effect of both T3 and 3-MC is also observed. This induction is suppressed by the RNA synthesis inhibitor actinomycin D, indicating that neither inducer acts at the level of mRNA stabilization. Indeed, nuclear run-on assays show a 3-fold increase in UGT1A1 transcription after T3 treatment and a 6-fold increase after 3-MC stimulation. This transcriptional induction by T3 is prevented by cycloheximide in primary hepatocyte cultures, while 3-MC stimulation is only partially affected after prolonged treatment with the protein synthesis inhibitor. Together, these data provide evidence for a transcriptional control of UGT1A1 synthesis and indicate that T3 and 3-MC use different activation mechanisms. Stimulation of the UGT1A1 gene by T3 requires de novo protein synthesis, while 3-MC-dependent activation is the result of a direct action of the compound, most likely via the aromatic hydrocarbon receptor complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The innate immune system has evolved the capacity to detect specific pathogens and to interrogate cell and tissue integrity in order to mount an appropriate immune response. Loss of homeostasis in the endoplasmic reticulum (ER) triggers the ER-stress response, a hallmark of many inflammatory and infectious diseases. The IRE1/XBP1 branch of the ER-stress signaling pathway has been recently shown to regulate and be regulated by innate immune signaling pathways in both the presence and absence of ER-stress. By contrast, innate immune pathways negatively affect the activation of two other branches of the ER-stress response as evidenced by reduced expression of the pro-apoptotic transcription factor CHOP. Here we will discuss how innate immune pathways and ER-signaling intersect to regulate the intensity and duration of innate immune responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The regulation of electricity transmission and distribution business is an essential issue for any electricity market; it is widely introduced in developed electricity markets of Great Britain, Scandinavian countries and United States of America and other. Those markets which were liberalized recently also need well planned regulation model to be chosen and implemented. In open electricity markets the sectors of electricity distribution and transmission remain monopolies, so called "natural monopolies", as introducing the competition into these sectors in most cases appears to be inefficient. Thatis why regulation becomes very important as its main tasks are: to set reasonable tariffs for customers, to ensure non-discriminating process of electricity transmission and distribution, at the same time to provide distribution companies with incentives to operate efficiently and the owners of the companies with reasonable profits as well; the problem of power quality should be solved at the same time. It should be mentioned also, that there is no incentive scheme which will be suitable for any conditions, that is why it is essential to study differentregulation models in order to form the best one for concrete situation. The aim of this Master's Thesis is to give an overview over theregulation of electricity transmission and distribution in Russia. First, the general information about theory of regulation of natural monopolies will be described; the situation in Russian network business and the importance of regulation process for it will be discussed next. Then there is a detailed description ofexisting regulatory system and the process of tariff calculation with an example. And finally, in the work there is a brief analysis of problems of present scheme of regulation, an attempt to predict the following development of regulationin Russia and the perspectives and risks connected to regulation which could face the companies that try to enter Russian electricity market (such as FORTUM OY).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The shift from solitary to social organisms constitutes one of the major transitions in evolution. The highest level of sociality is found in social insects (ants, termites and some species of bees and wasps). Division of labor is central to the organization of insect societies and is thought to be at the root of their ecological success. There are two main levels of division of labor in social insect colonies. The first relates to reproduction and involves the coexistence of queen and worker castes: while reproduction is usually monopolized by one or several queens, functionally sterile workers perform all the tasks to maintain the colony, such as nest building, foraging or brood care. The second level of division of labor, relating to such non-reproductive duties, is characterized by the performance of different tasks or roles by different groups of workers. This PhD aims to better understand the mechanisms underlying division of labor in insect societies, by investigating how genes and physiology influence caste determination and worker behavior in ants. In the first axis of this PhD, we studied the nature of genetic effects on division of labor. We used the Argentine ant Linepithema humile to conduct controlled crosses in the laboratory, which revealed the existence of non-additive genetic effects, such as parent-of-origin and genetic compatibility effects, on caste determination and worker behavior. In the second axis, we focused on the physiological regulation of division of labor. Using Pogonomyrmex seed- harvester ants, we performed experimental manipulation of hibernation, hormonal treatments, gene expression analyses and protein quantification to identify the physiological pathways regulating maternal effects on caste determination. Finally, comparing gene expression between nurses and foragers allowed us to reveal the association between vitellogenin and worker behavior in Pogonomyrmex ants. This PhD provides important insights into the role of genes and physiology in the regulation of division of labor in social insect colonies, helping to better understand the organization, evolution and ecological success of insect societies. - L'une des principales transitions évolutives est le passage de la vie solitaire à la vie sociale. La socialité atteint son paroxysme chez les insectes sociaux que sont les fourmis, les termites et certaines espèces d'abeilles et de guêpes. La division du travail est la clé de voûte de l'organisation de ces sociétés d'insectes et la raison principale de leur succès écologique. La division du travail s'effectue à deux niveaux dans les colonies d'insectes sociaux. Le premier niveau concerne la reproduction et implique la coexistence de deux castes : les reines et les ouvrières. Tandis que la reproduction est le plus souvent monopolisée par une ou plusieurs reines, les ouvrières stériles effectuent les tâches nécessaires au bon fonctionnement de la colonie, telles que la construction du nid, la recherche de nourriture ou le soin au couvain. Le second niveau de division du travail, qui concerne les tâches autres que la reproduction, implique la réalisation de différents travaux par différents groupes d'ouvrières. Le but de ce doctorat est de mieux comprendre les mécanismes sous-jacents de la division du travail dans les sociétés d'insectes en étudiant comment les gènes et la physiologie influencent la détermination de la caste et le comportement des ouvrières chez les fourmis. Dans le premier axe de ce doctorat, nous avons étudié la nature des influences génétiques sur la division du travail. Nous avons utilisé la fourmi d'Argentine, Linepithema humile, pour effectuer des croisements contrôlés en laboratoire. Cette méthode nous a permis de révéler l'existence d'influences génétiques non additives, telles que des influences dépendantes de l'origine parentale ou des effets de compatibilité génétique, sur la détermination de la caste et le comportement des ouvrières. Dans le second axe, nous nous sommes intéressés à la régulation physiologique de la division du travail. Nous avons utilisé des fourmis moissonneuses du genre Pogonomyrmex pour effectuer des hibernations artificieHes, des traitements hormonaux, des analyses d'expression de gènes et des mesures de vitellogénine, ce qui nous a permis d'identifier les mécanismes physiologiques régulant les effets maternels sur la détermination de la caste. Enfin, la comparaison d'expression de gènes entre nourrices et fourrageuses suggère un rôle de la vitellogénine dans la régulation du comportement des ouvrières chez les fourmis moissonneuses. En détaillant les influences des gènes et de la physiologie dans la régulation de la division du travail dans les colonies d'insectes sociaux, ce doctorat fournit d'importantes informations permettant de mieux comprendre l'organisation, l'évolution et le succès écologique des sociétés d'insectes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Human RNA polymerase III (pol III) transcription is regulated by several factors, including the tumor suppressors P53 and Rb, and the proto-oncogene c-Myc. In yeast, which lacks these proteins, a central regulator of pol III transcription, called Maf1, has been described. Maf1 is required for repression of pol III transcription in response to several signal transduction pathways and is broadly conserved in eukaryotes. METHODOLOGY/PRINCIPAL FINDINGS: We show that human endogenous Maf1 can be co-immunoprecipitated with pol III and associates in vitro with two pol III subunits, the largest subunit RPC1 and the alpha-like subunit RPAC2. Maf1 represses pol III transcription in vitro and in vivo and is required for maximal pol III repression after exposure to MMS or rapamycin, treatments that both lead to Maf1 dephosphorylation. CONCLUSIONS/SIGNIFICANCE: These data suggest that Maf1 is a major regulator of pol III transcription in human cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUMMARY Barrett's esophagus (BE) is an acquired condition in which the normal squamous epithelium in the distal esophagus is replaced by a metaplastic columnar epithelium, as a complication of chronic gastroesophageal reflux. The clinical significance of this disease is its associated predisposition to esophageal adenocarcinoma (EAC). EAC is a highly lethal disease. Better understanding of the pathogenesis of columnar metaplasia and its progression to cancer might allow the identification of biomarkers that can be used for early diagnosis, which will improve the patient survival. In this study, an improved protocol for methylation-sensitive single-strand conformation analysis, which is used to analyze promoter methylation, is proposed and a methylation-sensitive dot blot assay is described, which allows a rapid, easy, and sensitive detection of promoter methylation. Both methods were applied to study the methylation pattern of the APC promoter in histologically normal appearing gastric mucosa. The APC promoter showed monoallelic methylation, and because the methylated allele differed between the different gastric cell types, this corresponded to allelic exclusion. The APC methylation pattern was frequently altered in noimal gastric mucosa associated with neoplastic lesions, indicating that changes in the pattern of promoter methylation might precede the development of neoplasia, without accompanying histological manifestations. An epigenetic profile of 10 genes important in EAC was obtained in this study; 5 promoter genes (APC, TIMP3, TERT, CDKN2A and SFRP1) were found to be hypermethylated in the tumors. Furthermore, the promoter of APC, TIMP3 and TERT was frequently methylated in BE samples from EAC patients, but rarely in BE samples that did not progress to EAC. These three biomarkers might therefore be considered as potential predictive markers for increased EAC risk. Analysis of Wnt pathway alterations indicated that WNT2 ligand is overexpressed as early as the low-grade dysplastic stage and downregulation by promoter methylation of the SFRP1 gene occurrs already in the metaplastic lesions. Moreover, loss of APC expression is not the only factor involved in the activation of the Wnt pathway. These results indicate that a variety of biologic, mostly epigenetic events occurs very early in the carcinogenesis of BE. This new information might lead to improved early diagnosis of EAC and thus open the way to a possible application of these biomarkers in the prediction of increased EAC risk progression. RESUME L'oesophage de Barrett est une lésion métaplasique définie par le remplacement de la muqueuse malpighienne du bas oesophage par une muqueuse cylindrique glandulaire, suite à une agression chronique par du reflux gastro-esophagien. La plus importante signification clinique de cette maladie est sa prédisposition au développement d'un adénocarcinome. Le pronostic de l'adénocarcinome sur oesophage de Barrett est sombre. Seule une meilleure compréhension de la pathogenèse de l'épithélium métaplasique et de sa progression néoplasique permettrait l'identification de biomarqueurs pouvant être utilisés pour un diagnostic précoce ; la survie du patient serait ainsi augmentée. Dans cette étude, un protocole amélioré pour l'analyse de la méthylation par conformation simple brin est proposé. De plus, une technique d'analyse par dot blot permettant une détection rapide, facile et sensible de la méthylation d'un promoteur est décrite. Les deux méthodes ont été appliquées à l'étude de la méthylation du promoteur du gène APC dans des muqueuses gastriques histologiquement normales. Le promoteur APC a montré une méthylation monoallélique et, parce que les allèles méthylés différaient entre les différents types de cellules gastriques, celle-ci correspondait à une méthylation allélique exclusive. La méthylation d'APC a été trouvée fréquemment altérée dans la muqueuse gastrique normale associée à des lésions néoplasiques. Ceci indique que des changements dans la méthylation d'un promoteur peuvent précéder le développement d'une tumeur, et cela sans modification histologique. Un profil épigénétique des adénocarcinomes sur oesophage de Barrett a été obtenu dans cette étude. Cinq promoteurs (APC, TIMP3, TERT, CDKN2A et SFRP1) ont été trouvés hyperméthylés dans les tumeurs. Les promoteurs d'APC, TIMP3 et TERT étaient fréquemment méthylés dans l'épithélium métaplasique proche d'un adénocarcinome et rarement dans l'épithélium sans évolution néoplasique. Ces trois biomarkers pourraient par conséquent être considérés comme marqueur prédicatif d'un risque accru de développer une tumeur. L'analyse des altérations de la voie Wnt a montré que WNT2 est surexprimé déjà dans des dysplasies de bas-grade et que la dérégulation de SFRP1 par méthylation de son promoteur intervenait dans les lésions métaplasiques. Une perte d'expression d'APC n'est pas le seul facteur impliqué dans l'activation de cette voie. Ces résultats montrent qu'une grande diversité d'événements biologiques, principalement épigénétiques, surviennent très tôt lors de la carcinogenèse de l'oesophage de Barrett. Ces nouveaux éléments pourraient améliorer le diagnostic précoce et rendre possible l'application de ces biomarqueurs dans la prédiction d'un risque accru de développer un adénocarcinome sur un oesophage de Barrett.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maintaining wakefulness is associated with a progressive increase in the need for sleep. This phenomenon has been linked to changes in synaptic function. The synaptic adhesion molecule Neuroligin-1 (NLG1) controls the activity and synaptic localization of N-methyl-d-aspartate receptors, which activity is impaired by prolonged wakefulness. We here highlight that this pathway may underlie both the adverse effects of sleep loss on cognition and the subsequent changes in cortical synchrony. We found that the expression of specific Nlg1 transcript variants is changed by sleep deprivation in three mouse strains. These observations were associated with strain-specific changes in synaptic NLG1 protein content. Importantly, we showed that Nlg1 knockout mice are not able to sustain wakefulness and spend more time in nonrapid eye movement sleep than wild-type mice. These changes occurred with modifications in waking quality as exemplified by low theta/alpha activity during wakefulness and poor preference for social novelty, as well as altered delta synchrony during sleep. Finally, we identified a transcriptional pathway that could underlie the sleep/wake-dependent changes in Nlg1 expression and that involves clock transcription factors. We thus suggest that NLG1 is an element that contributes to the coupling of neuronal activity to sleep/wake regulation.