900 resultados para Dynamic range
Resumo:
It has been suggested that the accumulation of valuable resources and capabilities, such as Internet application, is not enough to support a firm’s sustainable competitive advantage, especially for high technology-mediated firms; which often operate in fast changing dynamic environments. While the idea of ‘Internet-enabled resources and capabilities’ has been recognised by RBV theorists, the notion has largely been ignored in conceptual and empirical studies. Given this finding, a conceptual framework is constructed and research issues are then developed in order to focus attention on the relationship between, the Internet and a firm’s resource base, dynamic capabilities and international market performance. We postulate that successful Internet-enabled market performance arises from those international entrepreneurial-oriented firms which encompass: international vision, international business experience, Internet-international marketing capabilities and international networking capabilities. Recommendations for future theory development are presented, along with the implications for international entrepreneurial managers in Australian small and medium sized firms
Resumo:
In this work a biomechanical model is used for simulation of muscle forces necessary to maintain the posture in a car seat under different support conditions.
Resumo:
The cycling interaction between climate change and building performance is of dynamic nature and both are essentially the cause and the effect of each other. On one hand, buildings contribute significantly to the global warming process. On the other hand, climate change is also expected to impact on many aspects of building performance. In this paper, the status of current research on the implication of climate change on built environment is reviewed. It is found that although the present research has covered broad areas of research, they are generally only limited to the qualitative analyses. It is also highlighted that although it is widely realized that reducing greenhouse gas emissions from the building sector is very important, the adoption of complementary adaptation strategy to prepare the building for a range of climate change scenarios is also necessary. Due to the lack of holistic approach to generate future hourly weather data, various approaches have been used to generate different key weather variables. This ad hoc situation has seriously hindered the application of building simulation technique to the climate change impact study, in particular, to provide quantitative information for policy and design development.
Resumo:
Focusing on the role within and between organizations of the project management discipline to design and implement strategy, as source of competitive advantage, leads us to question the scientific field behind this discipline. This science should be the basis for the development and use of bodies of knowledge, standards, certification programs, education, and competencies, and beyond this as a source of value for people, organizations, and society. Thus the importance to characterize, define, and understand this field and its underlying strength, basis, and development is paramount. For this purpose we propose to give some insights on the current situation. This will lead us to clarify our epistemological position and demonstrate that both constructivism and positivist approaches are required to seize the full dimension and dynamics of the field.We will referee to sociology of actor-networks and qualitative scientometrics leading to the choice of the co-word analysis method in enabling us to capture the project management field and its dynamics.Results of a study based on the analysis of ABI Inform database will be presented and some future trends and scenarios proposed.
Resumo:
Traffic generated semi and non volatile organic compounds (SVOCs and NVOCs) pose a serious threat to human and ecosystem health when washed off into receiving water bodies by stormwater. Climate change influenced rainfall characteristics makes the estimation of these pollutants in stormwater quite complex. The research study discussed in the paper developed a prediction framework for such pollutants under the dynamic influence of climate change on rainfall characteristics. It was established through principal component analysis (PCA) that the intensity and durations of low to moderate rain events induced by climate change mainly affect the wash-off of SVOCs and NVOCs from urban roads. The study outcomes were able to overcome the limitations of stringent laboratory preparation of calibration matrices by extracting uncorrelated underlying factors in the data matrices through systematic application of PCA and factor analysis (FA). Based on the initial findings from PCA and FA, the framework incorporated orthogonal rotatable central composite experimental design to set up calibration matrices and partial least square regression to identify significant variables in predicting the target SVOCs and NVOCs in four particulate fractions ranging from >300-1 μm and one dissolved fraction of <1 μm. For the particulate fractions range >300-1 μm, similar distributions of predicted and observed concentrations of the target compounds from minimum to 75th percentile were achieved. The inter-event coefficient of variations for particulate fractions of >300-1 μm were 5% to 25%. The limited solubility of the target compounds in stormwater restricted the predictive capacity of the proposed method for the dissolved fraction of <1 μm.
Resumo:
In this study, we explore the population genetics of the Russian wheat aphid (RWA) (Diuraphis noxia), one of the world’s most invasive agricultural pests, in north-western China. We have analysed the data of 10 microsatellite loci and mitochondrial sequences from 27 populations sampled over 2 years in China. The results confirm that the RWAs are holocyclic in China with high genetic diversity indicating widespread sexual reproduction. Distinct differences in microsatellite genetic diversity and distribution revealed clear geographic isolation between RWA populations in northern and southern Xinjiang, China, with gene flow interrupted across extensive desert regions. Despite frequent grain transportation from north to south in this region, little evidence for RWA translocation as a result of human agricultural activities was found. Consequently, frequent gene flow among northern populations most likely resulted from natural dispersal, potentially facilitated by wind currents. We also found evidence for the longterm existence and expansion of RWAs in China, despite local opinion that it is an exotic species only present in China since 1975. Our estimated date of RWA expansion throughout China coincides with the debut of wheat domestication and cultivation practices in western Asia in the Holocene. We conclude that western China represents the limit of the far eastern native range of this species. This study is the most comprehensive molecular genetic investigation of the RWA in its native range undertaken to date and provides valuable insights into the history of the association of this aphid with domesticated cereals and wild grasses.
Resumo:
This book is an empirical study of strategic management practices in the construction industry. It examines the dynamic capabilities paradigm within the context of the Indonesian construction industry. The characteristics of asset-capability combinations were found to be significant determinants of the competitive advantage of the Indonesian construction enterprises, and that such advantage sequentially contributes to organizational performance. In doing so, this study fills an important gap in the empirical literature and reinforces the dynamic capabilities framework’s recognition as a rigorous theory of strategic management. As the dynamic capabilities framework can work in the context of Indonesia, it suggests that the framework has potential applicability in other emerging and developing countries
Resumo:
The search for new multipoint, multidirectional strain sensing devices has received a new impetus since the discovery of carbon nanotubes. The excellent electrical, mechanical, and electromechanical properties of carbon nanotubes make them ideal candidates as primary materials in the design of this new generation of sensing devices. Carbon nanotube based strain sensors proposed so far include those based on individual carbon nanotubes for integration in nano or micro elecromechanical systems (NEMS/MEMS) [1], or carbon nanotube films consisting of spatially connected carbon nanotubes [2], carbon nanotube - polymer composites [3,4] for macroscale strain sensing. Carbon nanotube films have good strain sensing response and offer the possibility of multidirectional and multipoint strain sensing, but have poor performance due to weak interaction between carbon nanotubes. In addition, the carbon nanotube film sensor is extremely fragile and difficult to handle and install. We report here the static and dynamic strain sensing characteristics as well as temperature effects of a sandwich carbon nanotube - polymer sensor fabricated by infiltrating carbon nanotube films with polymer.
Resumo:
Surface coating with an organic self-assembled monolayer (SAM) can enhance surface reactions or the absorption of specific gases and hence improve the response of a metal oxide (MOx) sensor toward particular target gases in the environment. In this study the effect of an adsorbed organic layer on the dynamic response of zinc oxide nanowire gas sensors was investigated. The effect of ZnO surface functionalisation by two different organic molecules, tris(hydroxymethyl)aminomethane (THMA) and dodecanethiol (DT), was studied. The response towards ammonia, nitrous oxide and nitrogen dioxide was investigated for three sensor configurations, namely pure ZnO nanowires, organic-coated ZnO nanowires and ZnO nanowires covered with a sparse layer of organic-coated ZnO nanoparticles. Exposure of the nanowire sensors to the oxidising gas NO2 produced a significant and reproducible response. ZnO and THMA-coated ZnO nanowire sensors both readily detected NO2 down to a concentration in the very low ppm range. Notably, the THMA-coated nanowires consistently displayed a small, enhanced response to NO2 compared to uncoated ZnO nanowire sensors. At the lower concentration levels tested, ZnO nanowire sensors that were coated with THMA-capped ZnO nanoparticles were found to exhibit the greatest enhanced response. ΔR/R was two times greater than that for the as-prepared ZnO nanowire sensors. It is proposed that the ΔR/R enhancement in this case originates from the changes induced in the depletion-layer width of the ZnO nanoparticles that bridge ZnO nanowires resulting from THMA ligand binding to the surface of the particle coating. The heightened response and selectivity to the NO2 target are positive results arising from the coating of these ZnO nanowire sensors with organic-SAM-functionalised ZnO nanoparticles.
Resumo:
This paper illustrates robust fixed order power oscillation damper design for mitigating power systems oscillations. From implementation and tuning point of view, such low and fixed structure is common practice for most practical applications, including power systems. However, conventional techniques of optimal and robust control theory cannot handle the constraint of fixed-order as it is, in general, impossible to ensure a target closed-loop transfer function by a controller of any given order. This paper deals with the problem of synthesizing or designing a feedback controller of dynamic order for a linear time-invariant plant for a fixed plant, as well as for an uncertain family of plants containing parameter uncertainty, so that stability, robust stability and robust performance are attained. The desired closed-loop specifications considered here are given in terms of a target performance vector representing a desired closed-loop design. The performance of the designed controller is validated through non-linear simulations for a range of contingencies.
Resumo:
In this study the interplay effects for Enhanced Dynamic Wedge (EDW) treatments are experimentally investigated. Single and multiple field EDW plans for different wedge angles were delivered to a phantom and detector on a moving platform, with various periods, amplitudes for parallel and perpendicular motions. A four field 4D CT planned lung EDW treatment was delivered to a dummy tumor over four fractions. For the single field parallel case the amplitude and the period of motion both affect the interplay resulting in the appearance of a step function and penumbral cut off with the discrepancy worst where collimator-tumor speed is similar. For perpendicular motion the amplitude of tumor motion is the only dominant factor. For large wedge angle the dose discrepancy is more pronounced compared to the small wedge angle for the same field size and amplitude-period values. For a small field size i.e. 5 × 5 cm2 the loss of wedged distribution was observed for both 60º and 15º wedge angles for of parallel and perpendicular motions. Film results from 4D CT planned delivery displayed a mix of over and under dosages over 4 fractions, with the gamma pass rate of 40% for the averaged film image at 3%/1 mm DTA (Distance to Agreement). Amplitude and period of the tumor motion both affect the interplay for single and multi-field EDW treatments and for a limited (4 or 5) fraction delivery there is a possibility of non-averaging of the EDW interplay.
Resumo:
The ability of bridge deterioration models to predict future condition provides significant advantages in improving the effectiveness of maintenance decisions. This paper proposes a novel model using Dynamic Bayesian Networks (DBNs) for predicting the condition of bridge elements. The proposed model improves prediction results by being able to handle, deterioration dependencies among different bridge elements, the lack of full inspection histories, and joint considerations of both maintenance actions and environmental effects. With Bayesian updating capability, different types of data and information can be utilised as inputs. Expert knowledge can be used to deal with insufficient data as a starting point. The proposed model established a flexible basis for bridge systems deterioration modelling so that other models and Bayesian approaches can be further developed in one platform. A steel bridge main girder was chosen to validate the proposed model.