919 resultados para CU 2 ION
Resumo:
Introducción: El sector de la minería es fuente de desarrollo económico y social para Colombia (La Locomotora minera), ante este espectro se hace necesario su estudio en salud ocupacional. Objetivo: Caracterizar los subprogramas de medicina preventiva y del trabajo, higiene y seguridad industrial de las empresas de minería subterránea de carbón y determinar la asociación entre los riesgos identificados por los trabajadores y los establecidos por la empresa en el departamento de Cundinamarca. Materiales y métodos Estudio de corte transversal , utilizando dos tipos de cuestionarios estructurados: uno para empresa que caracterizó el estado del Programa de Salud Ocupacional, el otro dirigido a los empleados que identificó el conocimiento de los riesgos de exposición, uso de elementos de protección personal y acciones realizadas por el empleador. Resultados El desarrollo del Programa de Salud Ocupacional en Cundinamarca es bajo, en un rango del 25,26% al 38,85%. En la identificación del riesgo se presentó asociación en temperaturas extremas (5,00%) y uso de herramientas corto punzantes (58,8%). En uso de protección personal y su suministro se encontró asociación en mascarilla (60,00%) y eslinga (94,70%). Conclusiones Es necesario la implementación de controles estatales que mitiguen los riesgos, se cumpla con buenas condiciones laborales para disminuir índices de accidentalidad y enfermedad laboral.
Resumo:
Registro con c??digo de documento duplicado y modificado posteriormente
Resumo:
Resumen basado en el de la publicaci??n
Resumo:
Resumen basado en el de la publicaci??n
Resumo:
Resumen basado en el de la publicaci??n
Resumo:
La presència de la química teòrica i computacional està augmentant en quasi tots els camps de la recerca en química. Els càlculs teòrics poden ajudar a entendre millor l'estructura, les propietats i la reactivitat de compostos metàl·lics d'àrees tan diferents com la química inorgànica, organometàl·lica i bioinorgànica. No obstant això, és imprescindible utilitzar la metodologia adequada per obtenir resultats teòrics fiables. Els estudis d'aquesta tesi es poden dividir en dos grups diferents. El primer grup inclou l'estudi teòric del mecanisme de reacció de diversos sistemes que contenen coure i tenen diferents estructures Cun-O2. Aquests estudies s'han dut a terme amb l'objectiu de profunditzar en la natura dels processos oxidants químics i biològics promoguts per sistemes que contenen coure. En la segona part de la tesi, s'estudia la fiabilitat de diferents tècniques utilitzades per estudiar l'estructura electrònica i la reactivitat de sistemes que contenen coure, ferro i altres metalls de transició.
Resumo:
324 p.
Resumo:
Sediments play a fundamental role in the behaviour of contaminants in aquatic systems. Various processes in sediments, eg adsorption-desorption, oxidation-reduction, ion exchange or biological activities, can cause accumulation or release of metals and anions from the bottom of reservoirs, and have been recently studied in Polish waters [1-3]. Sediment samples from layer A: (1 divided by 6 cm depth in direct contact with bottom water); layer B: (7 divided by 12 cm depth moderate contact); and layer C: (12+ cm depth, in theory an inactive layer) were collected in September 2007 from six sites representing different types of hydrological conditions along the Dobczyce Reservoir (Fig. l). Water depths at the sampling points varied from 3.5 to 21 m. We have focused on studying the distribution and accumulation of several heavy metals (Cr, Pb, Cd, Cu and Zn) in the sediments. The surface, bottom and pore water (extracted from sediments by centrifugation) samples were also collected. Possible relationships between the heavy-metal distribution in sediments and the sediment characteristics (mineralogy, organic matter) as well as the Fe, Mn and Ca content of sediments, have been studied. The 02 concentrations in water samples were also measured. The heavy metals in sediments ranged from 19.0 to 226.3 mg/kg of dry mass (ppm). The results show considerable variations in heavy-metal concentrations between the 6 stations, but not in the individual layers (A, B, C). These variations are related to the mineralogy and chemical composition of the sediments and their pore waters.
Resumo:
In paper 1, we showed that the Heliospheric Imager (HI) instruments on the pair of NASA STEREO spacecraft can be used to image the streamer belt and, in particular, the variability of the slow solar wind which originates near helmet streamers. The observation of intense intermittent transient outflow by HI implies that the corresponding in situ observations of the slow solar wind and corotating interaction regions (CIRs) should contain many signatures of transients. In the present paper, we compare the HI observations with in situ measurements from the STEREO and ACE spacecraft. Analysis of the solar wind ion, magnetic field, and suprathermal electron flux measurements from the STEREO spacecraft reveals the presence of both closed and partially disconnected interplanetary magnetic field lines permeating the slow solar wind. We predict that one of the transients embedded within the second CIR (CIR‐D in paper 1) should impact the near‐Earth ACE spacecraft. ACE measurements confirm the presence of a transient at the time of CIR passage; the transient signature includes helical magnetic fields and bidirectional suprathermal electrons. On the same day, a strahl electron dropout is observed at STEREO‐B, correlated with the passage of a high plasma beta structure. Unlike ACE, STEREO‐B observes the transient a few hours ahead of the CIR. STEREO‐A, STEREO‐B, and ACE spacecraft observe very different slow solar wind properties ahead of and during the CIR analyzed in this paper, which we associate with the intermittent release of transients.
Resumo:
The D 2 dopamine receptor exists as dimers or as higher-order oligomers, as determined from data from physical experiments. In this study, we sought evidence that this oligomerization leads to cooperativity by examining the binding of three radioligands ([H-3] nemonapride, [H-3] raclopride, and [H-3] spiperone) to D 2 dopamine receptors expressed in membranes of Sf9 cells. In saturation binding experiments, the three radioligands exhibited different B-max values, and the B-max values could be altered by the addition of sodium ions to assays. Despite labeling different numbers of sites, the different ligands were able to achieve full inhibition in competition experiments. Some ligand pairs also exhibited complex inhibition curves in these experiments. In radioligand dissociation experiments, the rate of dissociation of [H-3] nemonapride or [H-3] spiperone depended on the sodium ion concentration but was independent of the competing ligand. Although some of the data in this study are consistent with the behavior of a cooperative oligomeric receptor, not all of the data are in agreement with this model. It may, therefore, be necessary to consider more complex models for the behavior of this receptor.
Resumo:
We previously identified the function of the hepatitis C virus (HCV) p7 protein as an ion channel in artificial lipid bilayers and demonstrated that this in vitro activity is inhibited by amantadine. Here we show that the ion channel activity of HCV p7 expressed in mammalian cells can substitute for that of influenza virus M2 in a cell-based assay. This was also the case for the p7 from the related virus, bovine viral diarrhoea virus (BVDV). Moreover, amantadine was shown to abrogate HCV p7 function in this assay at a concentration that specifically inhibits M2. Mutation of a conserved basic loop located between the two predicted trans-membrane alpha helices rendered HCV p7 non-functional as an ion channel. The intracellular localization of p7 was unaffected by this mutation and was found to overlap significantly with membranes associated with mitochondria. Demonstration of p7 ion channel activity in cellular membranes and its inhibition by amantadine affirm the protein as a target for future anti-viral chemotherapy.
Resumo:
We report the use of transition-metal-exchanged zeolites as media for the catalytic formation and encapsulation of both polyethyne and polypropyne, and computer modeling studies on the composites so formed. Alkyne gas was absorbed into the pores of zeolite Y (Faujasite) exchanged with transition-metal cations [Fe(II), Co(II), Cu(II), Ni(II), and Zn(II)]. Ni(II) and Zn(II) were found to be the most efficient for the production of poly-ynes. These cations were also found to be effective in polymer generation when exchanged in zeolites mordenite and beta. The resulting powdered samples were characterized by FTIR, Raman, diffuse reflectance electronic spectroscopy, TEM, and elemental analysis, revealing, nearly complete loading of the zeolite channels for the majority of the samples. Based on the experimental carbon content, we have derived the percentage of channel filling, and the proportion of the channels containing a single polymer chain for mordenite. Experimentally, the channels for Y are close to complete filling for polyethyne (PE) and polypropyne (PP), and this is also true for polyethyne in mordenite. Computer modeling studies using Cerius2 show that the channels of mordenite can only accept a single polymer chain of PP, in which case these channels are also completely filled.
Resumo:
In this study, the extraction properties of a synergistic system consisting of 2,6-bis-(benzoxazolyl)-4-dodecyloxylpyridine (BODO) and 2-bromodecanoic acid (HA) in tert-butyl benzene (TBB) have been investigated as a function of ionic strength by varying the nitrate ion and perchlorate ion concentrations. The influence of the hydrogen ion concentration has also been investigated. Distribution ratios between 0.03-12 and 0.003-0.8 have been found for Am(III) and Eu(HI), respectively, but there were no attempts to maximize these values. It has been shown that the distribution ratios decrease with increasing amounts of ClO4-, NO3-, and H+. The mechanisms, however, by which the decrease occurs, are different. In the case of increasing perchlorate ion concentration, the decrease in extraction is linear in a log-log plot of the distribution ratio vs. the ionic strength, while in the nitrate case the complexation between nitrate and Am or Eu increases at high nitrate ion concentrations and thereby decreases the distribution ratio in a non-linearway. The decrease in extraction could be caused by changes in activity coefficients that can be explained with specific ion interaction theory (SIT); shielding of the metal ions, and by nitrate complexation with Am and Eu as competing mechanism at high ionic strengths. The separation factor between Am and Eu reaches a maximum at similar to1 M nitrate ion concentration. Thereafter the values decrease with increasing nitrate ion concentrations.