998 resultados para CATECHOLAMINE RESPONSE
Resumo:
The fabrication of tissue engineering scaffolds necessitates amalgamation of a multitude of attributes including a desirable porosity to encourage vascular invasion, desired surface chemistry for controlled deposition of calcium phosphate-based mineral as well as ability to support attachment, proliferation, and differentiation of lineage specific progenitor cells. Scaffold fabrication often includes additional surface treatments to bring about desired changes in the surface chemistry. In this perspective, this review documents the important natural and synthetic scaffolds fabricated for bone tissue engineering applications in tandem with the surface treatment techniques to maneuver the biocompatibility of engineered scaffolds. This review begins with a discussion on the fundamental concepts related to biocompatibility as well as the characteristics of the biological micro-environment. The primary focus is to discuss the effects of surface micro/nano patterning on the modulation of bone cell response. Apart from reviewing a host of experimental studies reporting the functionality of osteoblast-like bone cells and stem cells on surface modified or textured bioceramic/biopolymer scaffolds, theoretical insights to predict cell behavior on a scaffold with different topographical features are also briefly analyzed.
Resumo:
In this work, the effect of hybridizing micro-Ti with nano-SiC particulates on the microstructural and the mechanical behaviour of Mg-5.6Ti composite were investigated. Mg materials containing micron-sized Ti particulates hybridized with different amounts of nano-size SiC particulates were synthesized using the disintegrated melt deposition method followed by hot extrusion. The microstructural and mechanical behaviour of the developed Mg hybrid composites were studied in comparison with Mg-5.6Ti. Microstructural characterization revealed grain refinement attributed to the presence of uniformly distributed micro-Ti particles embedded with nano-SiC particulates. Electron back scattered diffraction (EBSD) analyses of Mg-(5.6Ti + 1.0SiC)(BM) hybrid composite showed relatively more localized recrystallized grains and lesser tensile twin fraction, when compared to Mg-5.6Ti. The evaluation of mechanical properties indicated that the best combination of strength and ductility was observed in the Mg-(5.6Ti + 1.0SiC)(BM) hybrid composites. The superior strength properties of the Mg-(5.6Ti + x-SiC)(BM) hybrid composites when compared to Mg-5.6Ti is attributed to the presence of nano-reinforcements, the uniform distribution of the hybridized particles and the better interfacial bonding between the matrix and the reinforcement particles, achieved by nano-SiC addition.
Resumo:
Mycobacterium tuberculosis owes its high pathogenic potential to its ability to evade host immune responses and thrive inside the macrophage. The outcome of infection is largely determined by the cellular response comprising a multitude of molecular events. The complexity and inter-relatedness in the processes makes it essential to adopt systems approaches to study them. In this work, we construct a comprehensive network of infection-related processes in a human macrophage comprising 1888 proteins and 14,016 interactions. We then compute response networks based on available gene expression profiles corresponding to states of health, disease and drug treatment. We use a novel formulation for mining response networks that has led to identifying highest activities in the cell. Highest activity paths provide mechanistic insights into pathogenesis and response to treatment. The approach used here serves as a generic framework for mining dynamic changes in genome-scale protein interaction networks.
Resumo:
Neutron powder diffraction study of Ba(Ti1-xZrx)O-3 at close composition intervals has revealed coexistence of ferroelectric phases: orthorhombic (Amm2) + tetragonal (P4mm) for 0.02 <= x <= 0.05 and rhombohedral (R3m) + orthorhombic (Amm2) for 0.07 <= x < 0.09. These compositions exhibit relatively enhanced piezoelectric properties as compared to their single phase counterparts outside this composition region, confirming the polymorphic phase boundary nature of the phase coexistence regions. (C) 2013 AIP Publishing LLC.
Resumo:
The random eigenvalue problem arises in frequency and mode shape determination for a linear system with uncertainties in structural properties. Among several methods of characterizing this random eigenvalue problem, one computationally fast method that gives good accuracy is a weak formulation using polynomial chaos expansion (PCE). In this method, the eigenvalues and eigenvectors are expanded in PCE, and the residual is minimized by a Galerkin projection. The goals of the current work are (i) to implement this PCE-characterized random eigenvalue problem in the dynamic response calculation under random loading and (ii) to explore the computational advantages and challenges. In the proposed method, the response quantities are also expressed in PCE followed by a Galerkin projection. A numerical comparison with a perturbation method and the Monte Carlo simulation shows that when the loading has a random amplitude but deterministic frequency content, the proposed method gives more accurate results than a first-order perturbation method and a comparable accuracy as the Monte Carlo simulation in a lower computational time. However, as the frequency content of the loading becomes random, or for general random process loadings, the method loses its accuracy and computational efficiency. Issues in implementation, limitations, and further challenges are also addressed.
Resumo:
The Rv0805 gene in Mycobacterium tuberculosis encodes a metallophosphoesterase which shows cAMP-hydrolytic activity. Overexpression of Rv0805 has been used as a tool to lower intracellular cAMP levels and thereby elucidate the roles of cAMP in mycobacteria. Here we show that levels of cAMP in M. tuberculosis were lowered by only similar to 30% following overexpression of Rv0805, and transcript levels of a number of genes, which include those associated with virulence and the methyl citrate cycle, were altered. The genes that showed altered expression were distinct from those differentially regulated in a strain deleted for the cAMP-receptor protein (CRPMt), consistent with the relatively low dependence on cAMP of CRPMt binding to DNA. Using mutants of Rv0805 we show that the transcriptional signature of Rv0805 overexpression is a combination of catalysis-dependent and independent effects, and that the structurally flexible C-terminus of Rv0805 is crucial for the catalysis-independent effects of the protein. Our study demonstrates the dissociation of Rv0805 and cAMP-regulated gene expression, and reveals alternate functions for this phosphodiesterase from M. tuberculosis.
Resumo:
The structure and photophysical properties of a new triad (borane-bithiophene-BODIPY) 1 have been investigated. Triad 1 exhibits unprecedented tricolour emission when excited at the borane centred high energy absorption band and also acts as a selective fluorescent and colorimetric sensor for fluoride ions with ratiometric response. The experimental results are supported by computational studies.
Resumo:
The lead-free Ba (Ti1-xZrx)O-3 ceramic has shown enhanced piezo-response (d(33)) in a narrow composition interval (0.01 <= x <= 0.03) exhibiting the coexistence of two ferroelectric phases. The system presents two electric-field-dependent-property regimes: (i) a low field regime (E < 1.7 kV mm(-1)) where d(33) is nearly independent of the poling field, and (ii) (E > 1.7 kV mm(-1)) for which d(33) drops sharply. X-ray diffraction studies revealed that the later phenomenon is related to field driven irreversible structural transformation, which tends to drive the system away from an equilibrium two phase state to a nearly single phase metastable state.
Resumo:
This paper reports the first observations of transition from a pre-vortex breakdown (Pre-VB) flowreversal to a fully developed central toroidal recirculation zone in a non-reacting, double-concentric swirling jet configuration and its response to longitudinal acoustic excitation. This transition proceeds with the formation of two intermediate, critical flow regimes. First, a partially penetrated vortex breakdown bubble (VBB) is formed that indicates the first occurrence of an enclosed structure as the centre jet penetration is suppressed by the growing outer roll-up eddy; resulting in an opposed flow stagnation region. Second, a metastable transition structure is formed that marks the collapse of inner mixing vortices. In this study, the time-averaged topological changes in the coherent recirculation structures are discussed based on the non-dimensional modified Rossby number (Ro(m)) which appears to describe the spreading of the zone of swirl influence in different flow regimes. Further, the time-mean global acoustic response of pre-VB and VBB is measured as a function of pulsing frequency using the relative aerodynamic blockage factor (i.e., maximum radial width of the inner recirculation zone). It is observed that all flow modes except VBB are structurally unstable as they exhibit severe transverse radial shrinkage (similar to 20%) at the burner Helmholtz resonant modes (100-110 Hz). In contrast, all flow regimes show positional instability as seen by the large-scale, asymmetric spatial shifting of the vortex core centres. Finally, the mixing transfer function M (f) and magnitude squared coherence lambda(2)(f) analysis is presented to determine the natural couplingmodes of the system dynamic parameters (u', p'), i.e., local acoustic response. It is seen that the pre-VB flow mode exhibits a narrow-band, low pass filter behavior with a linear response window of 100-105 Hz. However, in the VBB structure, presence of critical regions such as the opposed flow stagnation region alters the linearity range with the structure showing a response even at higher pulsing frequencies (100-300 Hz). (C) 2013 AIP Publishing LLC.
Resumo:
Recently, authors published a method to indirectly measure series capacitance (C-s) of a single, isolated, uniformly wound transformer winding, from its measured frequency response. The next step was to implement it on an actual three-phase transformer. This task is not as straightforward as it might appear at first glance, since the measured frequency response on a three-phase transformer is influenced by nontested windings and their terminal connections, core, tank, etc. To extract the correct value of C-s from this composite frequency response, the formulation has to be reworked to first identify all significant influences and then include their effects. Initially, the modified method and experimental results on a three-phase transformer (4 MVA, 33 kV/433 V) are presented along with results on the winding considered in isolation (for cross validation). Later, the method is directly implemented on another three-phase unit (3.5 MVA, 13.8 kV/765 V) to show repeatability.
Resumo:
The bio-corrosion response of ultrafine-grained commercially pure titanium processed by different routes of equal-channel angular pressing has been studied in simulated body fluid. The results indicate that the samples processed through route B-c that involved rotation of the workpiece by 90 deg in the same sense between each pass exhibited higher corrosion resistance compared to the ones processed by other routes of equal-channel angular pressing, as well as the coarse-grained sample. For a similar grain size, the higher corrosion resistance of the samples exhibiting off-basal texture compared to shear texture indicates the major role of texture in corrosion behavior. It is postulated that an optimum combination of microstructure and crystallographic texture can lead to high strength and excellent corrosion resistance.
Resumo:
The ethanol sensing properties of porous Cr2O3 thin films deposited by the ultrasonic nebulized spray pyrolysis of an aqueous combustion mixture is reported. The impact of the precursor selection and various deposition parameters on the film crystallinity, surface morphology and stoichiometry are studied using thermo-gravimetric analysis, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and atomic force microscopy techniques. The film morphology exhibits a highly porous nature, as a result of the exothermic combustion reaction during film deposition. The gas sensing properties of these films are investigated in the temperature range of 200-375 degrees C for ethanol. The films show two different regions of response for ethanol above and below 300 degrees C. A good relationship between the response and the ethanol concentration is observed, and is modeled using an empirical relation. The possible mechanism and the surface chemical reactions of ethanol over the chromium oxide surface are discussed.
Resumo:
A controlled laboratory experiment was carried out on forty Indian male college students for evaluating the effect of indoor thermal environment on occupants' response and thermal comfort. During experiment, indoor temperature varied from 21 degrees C to 33 degrees C, and the variables like relative humidity, airflow, air temperature and radiant temperature were recorded along with skin (T-sk) and oral temperature (T-core) from the subjects. From T-sk and T-c, body temperature (T-b) was evaluated. Subjective Thermal Sensation Vote (TSV) was recorded using ASHRAE 7-point scale. In PMV model, Fanger's T-sk equation was used to accommodate adaptive response. Stepwise regression analysis result showed T-b was better predictor of TSV than T-sk and T-core. Regional skin temperature response, lower sweat threshold temperature with no dipping sweat and higher cutaneous sweating threshold temperature were observed as thermal adaptive responses. Using PMV model, thermal comfort zone was evaluated as (22.46-25.41) degrees C with neutral temperature of 23.91 degrees C, whereas using TSV response, wider comfort zone was estimated as (23.25-2632) degrees C with neutral temperature at 24.83 degrees C. It was observed that PMV-model overestimated the actual thermal response. Interestingly, these subjects were found to be less sensitive to hot but more sensitive to cold. A new TSV-PPD relation (PPDnew) was obtained with an asymmetric distribution of hot-cold thermal sensation response in Indians. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The overall elastic response of a bundle of coated cylinders is a major aspect of thermal, nuclear and automotive engineering designs. This paper extends the previous work on tubular bundles to assess the effect of coating material and thickness. A major contribution from this paper is determining the overall transverse elastic response of coated thick cylinders by extending the Michell stress function approach in conjunction with contact mechanics. Finite element results using contact elements pave the way for applying the contact stress boundary conditions for Michell analysis. Theoretical and finite element analyses overall give results consistent with the previous work, and the results also fall within the well-established Voigt-Reuss bounds. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Magneto-electric composites comprising Na0.5Bi0.5TiO3 (NBT) and MnFe2O4 (MFO) were fabricated using their fine powders obtained via sol-gel method. X-ray diffraction and scanning electron microscopy results confirmed the single-phase formation of NBT and MFO and the composite nature when these were mixed and sintered at appropriate temperatures. The dielectric constant (epsilon(r)) and dielectric loss (D) decreased with increase in frequency (40-110 MHz). Room temperature magnetization measurements established these composites to be soft magnetic. Further, the nature of these composites were established to be magneto-electric at 300 K. The highest ME response of 0.19 % was observed in 30NBT-70MFO composite. The ME coefficient (alpha) was 240 mV/cm Oe for the same composition. The present study demonstrated the effectiveness of NBT/MFO as a lead-free multiferroic composite and provides an alternative for environment-friendly ME device applications.