859 resultados para BORON-CENTERED RADICALS
Resumo:
We have fabricated a new van-der-Waals heterostructure composed by BN/graphene/C60. We performed transport measurements on the preliminary BN/graphene device finding a sharp Dirac point at the neutrality point. After the deposition of a C60 thin film by thermal evaporation, we have observed a significant n-doping of the heterostructure. This suggests an unusual electron transfer from C60 into the BN/graphene structure. This BN/graphene/C60 heterostructure can be of interest in photovoltaic applications. It can be used to build devices like p-n junctions, where C60 can be easily deposited in defined regions of a graphene junction by the use of a shadow mask. Our results are contrasted with theoretical calculations.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Resumo:
A FREE training event that will offer valuable and timely information about: *LifeLong Links Network Statewide Expansion *Preadmission Screening and Resident Review (PASRR) in Iowa *Magellan Health Services—SeniorConnect and Integrated Health Homes (IHH) *The role of the Long Term Care Ombudsman
Resumo:
Boron and Li are light, incompatible elements that preferentially partition into the liquid phase, whether melt or aqueous fluid, and thus are useful for tracking fluid-related processes in rocks. Most of the Li isotopic data presently available on subduction-related rocks are from whole-rock analyses; and the B isotopic analyses of subduction material have been carried out either on whole-rocks or in-situ on an accessory phase, such as tourmaline. The new method presented here couples an ESI New Wave UP-193-FX ArF* (193 nm) excimer laser-ablation microscope with a Neptune Plus (Thermo Scientific) MC-ICP-MS aiming to measure both Li and B isotopes in situ with good spatial resolution (metamorphic minerals are commonly chemically zoned, and whole-rock analyses lose this detail). The data thus obtained are compared with SIMS analyses on the same mineral samples for B, and with MC-ICP-MS analyses on whole-rock or mineral separates from the same sample for Li. Additionally, data acquired on tourmaline standards were compared to SIMS values. The results show that for B concentrations above 5 μg/g, the data obtained by LA-MC-ICP-MS and by SIMS are identical within error, for mica (phengitic muscovite), pyroxene (jadeite), serpentine (antigorite), and tourmaline. For Li concentrations above 10 μg/g, the data obtained by LA-MC-ICP-MS and by MC-ICP-MS are also identical, within error, for mica (phengitic muscovite), and pyroxene (jadeite). However, analyses of tourmaline standards have shown significant differences with reference values, so LA-MC-ICP-MS does not yet appear to be an appropriate method to analyze Li isotopes in tourmalines. Thus, LA-MC-ICP-MS is a suitable method to measure Li and B isotopes with good spatial resolution in major rock-forming silicates from subduction-related rocks where concentrations exceed 10 μg/g and 5 μg/g, respectively, with an error on individual measurements equal to or less than previously used methods, but obtainable in a significantly shorter amount of time. The external reproducibility is ± 2.88 to 3.31 ‰ for B and ± 1.50 to 1.75 for Li, which is lower than or equal to the variations encountered within a given chemically zoned sample (up to 10 ‰ of variation within a given natural sample).
Resumo:
In this paper we envision didactical concepts for university education based on self-responsible and project-based learning and outline principles of adequate technical support. We use the scenario technique describing how a fictive student named Anna organizes her studies of informatics at a fictive university from the first days of her studies to make a career for herself.(DIPF/Orig.)
Resumo:
International audience
Resumo:
Software updates are critical to the security of software systems and devices. Yet users often do not install them in a timely manner, leaving their devices open to security exploits. This research explored a re-design of automatic software updates on desktop and mobile devices to improve the uptake of updates through three studies. First using interviews, we studied users’ updating patterns and behaviors on desktop machines in a formative study. Second, we distilled these findings into the design of a low-fi prototype for desktops, and evaluated its efficacy for automating updates by means of a think-aloud study. Third, we investigated individual differences in update automation on Android devices using a large scale survey, and interviews. In this thesis, I present the findings of all three studies and provide evidence for how automatic updates can be better appropriated to fit users on both desktops and mobile devices. Additionally, I provide user interface design suggestions for software updates and outline recommendations for future work to improve the user experience of software updates.