908 resultados para Analysis of multiple regression


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This cross-sectional study was conducted in southern Minas Gerais, in two counties: São Gonçalo do Sapucaí and Silvianópolis. Presented as objective to verify the important variables associated with the occurrence of symptoms of subacute intoxication related to pesticides exposure. A questionnaire was dedicated to a sample of 412 workers. An analysis of non-conditional logistic regression was applied gradually. The likelihood ratio method was used to define the significant variables in the final model. Of the analysed population, 59.2% reported symptoms typical of subacute intoxication. Of the respondents, 91.5% reported knowing the deleterious effects associated with exposure to pesticides. The adjusted model was found with the significant variables: being male that presented Prevalence Odds Ratio (POR) adjusted . PORof 0.54 (95% CI 0.36 to 0.81), already hospitalized for poisoning with pesticides, POR of 3.26 (95% CI 1.08 to 9.82), living in the rural area of residence., POR of 2.17 (95% CI 1.20 to 3.93) and type of employment relationship or temporary employment, POR of 2.32 (95% CI 1.08 to 4.95).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since a pork barrel is crucial in buying off voters, competition over the distributions among legislators has been considered as one of the main factors in producing congressional political dynamism and congressional institutions. This paper aims to test the theory of pork barrel distributions in the Philippines through OLS regression on the quantitative data of the 12th congress. The results show that some attributes of legislators are statistically significant in estimating pork barrel allocations, but, do not support the hypothesis that the legislators’ proximity to leaders is a determining factor in the distributions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Philippines has achieved a relatively high standard of education. Previous researches, most of which deal with Luzon Island, have indicated that rural poverty alleviation began partly due to the increased investment in education. However, the suburban areas beyond Luzon Island have rarely been studied. This study examines a case from rural Mindanao, and investigates the determinants and factors associated with children's education, with a special focus on delays in schooling, which may be a cause of dropout and holdover incidences, as well as exploring gender-specific differential patterns. The result shows that after controlling other socioeconomic attributes, (1) delays in schooling, as well as years completed, are more favorable for girls than boys; (2) the level of maternal education is equally associated with the child(ren)’s education level regardless of their gender; and (3) paternal education is preferentially and favorably influential to the same-gender child(ren), i.e., son(s). To reduce the boy-unfriendly gender bias in primary education, this study suggests two future tasks, i.e., providing boy-specific interventions to enhance the magnitude of the father-son educational virtuous circle, and comparing the magnitude of gender-equal maternal education influence and boy-preferential paternal education influence to specify which effect is larger.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transportation infrastructure is known to affect the value of real estate property by virtue of changes in accessibility. The impact of transportation facilities is highly localized as well, and it is possible that spillover effects result from the capitalization of accessibility. The objective of this study was to review the theoretical background related to spatial hedonic models and the opportunities that they provided to evaluate the effect of new transportation infrastructure. An empirical case study is presented: the Madrid Metro Line 12, known as Metrosur, in the region of Madrid, Spain. The effect of proximity to metro stations on housing prices was evaluated. The analysis took into account a host of variables, including structure, location, and neighborhood and made use of three modeling approaches: linear regression estimation with ordinary least squares, spatial error, and spatial lag. The results indicated that better accessibility to Metrosur stations had a positive impact on real estate values and that the effect was marked in cases in which a house was for sale. The results also showed the presence of submarkets, which were well defined by geographic boundaries, and transport fares, which implied that the economic benefits differed across municipalities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the múltiple specialization of logic programs based on abstract interpretation. This involves in general generating several versions of a program predícate for different uses of such predícate, making use of information obtained from global analysis performed by an abstract interpreter, and finally producing a new, "multiply specialized" program. While the topic of múltiple specialization of logic programs has received considerable theoretical attention, it has never been actually incorporated in a compiler and its effects quantified. We perform such a study in the context of a parallelizing compiler and show that it is indeed a relevant technique in practice. Also, we propose an implementation technique which has the same power as the strongest of the previously proposed techniques but requires little or no modification of an existing abstract interpreter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Public Private Partnerships (PPPs) are mostly implemented for three reasons: to circumvent budgetary constraints, encourage efficiency and improvement of quality in the provision of public infrastructure. One of the ways of reaching the latter objective is by the introduction of performance-based standards tied to bonuses and penalties to reward or punish the performance of the contractor. These performance based standards often refer to different aspects such as technical, environmental and safety issues. This paper focuses on the implementation of safety based incentives in PPPs. The main aim of this paper is to analyze whether the incentives to improve road safety in PPPs are effective in improving safety ratios in Spain. To this end, negative binomial regression models have been applied using information from the Spanish high capacity network in 2006. The findings indicate that even though road safety is highly influenced by variables that are not much controllable by the contractor such as the Average Annual Daily Traffic and the percentage of heavy vehicles in the highway, the implementation of safety incentives in PPPs has a positive influence in the reduction of fatalities, injuries and accidents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article aims to quantify the efficiency of mobile operators in Spain and other European countries such as France and Germany. The period considered is from 2002 to 2008. Linear regression is used to analyze the relationship between growth in revenue and gross operating margin (EBITDA) generated by the relevant operators and the aggregate industry in each country. At the industry level, it is shown that (i) there is a strong correlation between revenue and margin; and (ii) this correlation weakens when competitive intensity grows. At the operator level, those which achieved larger increases in revenues did not sacrifice their margins, but offset the additional investments and costs required to achieve said growth through economies of scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La computación basada en servicios (Service-Oriented Computing, SOC) se estableció como un paradigma ampliamente aceptado para el desarollo de sistemas de software flexibles, distribuidos y adaptables, donde las composiciones de los servicios realizan las tareas más complejas o de nivel más alto, frecuentemente tareas inter-organizativas usando los servicios atómicos u otras composiciones de servicios. En tales sistemas, las propriedades de la calidad de servicio (Quality of Service, QoS), como la rapídez de procesamiento, coste, disponibilidad o seguridad, son críticas para la usabilidad de los servicios o sus composiciones en cualquier aplicación concreta. El análisis de estas propriedades se puede realizarse de una forma más precisa y rica en información si se utilizan las técnicas de análisis de programas, como el análisis de complejidad o de compartición de datos, que son capables de analizar simultáneamente tanto las estructuras de control como las de datos, dependencias y operaciones en una composición. El análisis de coste computacional para la composicion de servicios puede ayudar a una monitorización predictiva así como a una adaptación proactiva a través de una inferencia automática de coste computacional, usando los limites altos y bajos como funciones del valor o del tamaño de los mensajes de entrada. Tales funciones de coste se pueden usar para adaptación en la forma de selección de los candidatos entre los servicios que minimizan el coste total de la composición, basado en los datos reales que se pasan al servicio. Las funciones de coste también pueden ser combinadas con los parámetros extraídos empíricamente desde la infraestructura, para producir las funciones de los límites de QoS sobre los datos de entrada, cuales se pueden usar para previsar, en el momento de invocación, las violaciones de los compromisos al nivel de servicios (Service Level Agreements, SLA) potenciales or inminentes. En las composiciones críticas, una previsión continua de QoS bastante eficaz y precisa se puede basar en el modelado con restricciones de QoS desde la estructura de la composition, datos empiricos en tiempo de ejecución y (cuando estén disponibles) los resultados del análisis de complejidad. Este enfoque se puede aplicar a las orquestaciones de servicios con un control centralizado del flujo, así como a las coreografías con participantes multiples, siguiendo unas interacciones complejas que modifican su estado. El análisis del compartición de datos puede servir de apoyo para acciones de adaptación, como la paralelización, fragmentación y selección de los componentes, las cuales son basadas en dependencias funcionales y en el contenido de información en los mensajes, datos internos y las actividades de la composición, cuando se usan construcciones de control complejas, como bucles, bifurcaciones y flujos anidados. Tanto las dependencias funcionales como el contenido de información (descrito a través de algunos atributos definidos por el usuario) se pueden expresar usando una representación basada en la lógica de primer orden (claúsulas de Horn), y los resultados del análisis se pueden interpretar como modelos conceptuales basados en retículos. ABSTRACT Service-Oriented Computing (SOC) is a widely accepted paradigm for development of flexible, distributed and adaptable software systems, in which service compositions perform more complex, higher-level, often cross-organizational tasks using atomic services or other service compositions. In such systems, Quality of Service (QoS) properties, such as the performance, cost, availability or security, are critical for the usability of services and their compositions in concrete applications. Analysis of these properties can become more precise and richer in information, if it employs program analysis techniques, such as the complexity and sharing analyses, which are able to simultaneously take into account both the control and the data structures, dependencies, and operations in a composition. Computation cost analysis for service composition can support predictive monitoring and proactive adaptation by automatically inferring computation cost using the upper and lower bound functions of value or size of input messages. These cost functions can be used for adaptation by selecting service candidates that minimize total cost of the composition, based on the actual data that is passed to them. The cost functions can also be combined with the empirically collected infrastructural parameters to produce QoS bounds functions of input data that can be used to predict potential or imminent Service Level Agreement (SLA) violations at the moment of invocation. In mission-critical applications, an effective and accurate continuous QoS prediction, based on continuations, can be achieved by constraint modeling of composition QoS based on its structure, known data at runtime, and (when available) the results of complexity analysis. This approach can be applied to service orchestrations with centralized flow control, and choreographies with multiple participants with complex stateful interactions. Sharing analysis can support adaptation actions, such as parallelization, fragmentation, and component selection, which are based on functional dependencies and information content of the composition messages, internal data, and activities, in presence of complex control constructs, such as loops, branches, and sub-workflows. Both the functional dependencies and the information content (described using user-defined attributes) can be expressed using a first-order logic (Horn clause) representation, and the analysis results can be interpreted as a lattice-based conceptual models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atrial fibrillation (AF) is a common heart disorder. One of the most prominent hypothesis about its initiation and maintenance considers multiple uncoordinated activation foci inside the atrium. However, the implicit assumption behind all the signal processing techniques used for AF, such as dominant frequency and organization analysis, is the existence of a single regular component in the observed signals. In this paper we take into account the existence of multiple foci, performing a spectral analysis to detect their number and frequencies. In order to obtain a cleaner signal on which the spectral analysis can be performed, we introduce sparsity-aware learning techniques to infer the spike trains corresponding to the activations. The good performance of the proposed algorithm is demonstrated both on synthetic and real data. RESUMEN. Algoritmo basado en técnicas de regresión dispersa para la extracción de las señales cardiacas en pacientes con fibrilación atrial (AF).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrous oxide emissions from a network of agricultural experiments in Europe were used to explore the relative importance of site and management controls of emissions. At each site, a selection of management interventions were compared within replicated experimental designs in plot-based experiments. Arable experiments were conducted at Beano in Italy, El Encin in Spain, Foulum in Denmark, Logarden in Sweden, Maulde in Belgium CE1, Paulinenaue in Germany, and Tulloch in the UK. Grassland experiments were conducted at Crichton, Nafferton and Peaknaze in the UK, Godollo in Hungary, Rzecin in Poland, Zarnekow in Germany and Theix in France. Nitrous oxide emissions were measured at each site over a period of at least two years using static chambers. Emissions varied widely between sites and as a result of manipulation treatments. Average site emissions (throughout the study period) varied between 0.04 and 21.21 kg N2O-N ha−1yr−1, with the largest fluxes and variability associated with the grassland sites. Total nitrogen addition was found to be the single most important deter- minant of emissions, accounting for 15 % of the variance (using linear regression) in the data from the arable sites (p<0.0001), and 77 % in the grassland sites. The annual emissions from arable sites were significantly greater than those that would be predicted by IPCC default emission fac- tors. Variability of N2O emissions within sites that occurred as a result of manipulation treatments was greater than that resulting from site-to-site and year-to-year variation, highlighting the importance of management interventions in contributing to greenhouse gas mitigation