Sparse spectral analysis of atrial fibrillation electrograms


Autoria(s): Monzón García, Sandra; Trigano, Tom; Luengo García, David; Artés Rodríguez, Antonio
Data(s)

2012

Resumo

Atrial fibrillation (AF) is a common heart disorder. One of the most prominent hypothesis about its initiation and maintenance considers multiple uncoordinated activation foci inside the atrium. However, the implicit assumption behind all the signal processing techniques used for AF, such as dominant frequency and organization analysis, is the existence of a single regular component in the observed signals. In this paper we take into account the existence of multiple foci, performing a spectral analysis to detect their number and frequencies. In order to obtain a cleaner signal on which the spectral analysis can be performed, we introduce sparsity-aware learning techniques to infer the spike trains corresponding to the activations. The good performance of the proposed algorithm is demonstrated both on synthetic and real data. RESUMEN. Algoritmo basado en técnicas de regresión dispersa para la extracción de las señales cardiacas en pacientes con fibrilación atrial (AF).

Formato

application/pdf

Identificador

http://oa.upm.es/22893/

Idioma(s)

eng

Publicador

E.U.I.T. Telecomunicación (UPM)

Relação

http://oa.upm.es/22893/1/INVE_MEM_2012_153261.pdf

http://mlsp2012.conwiz.dk/

info:eu-repo/semantics/altIdentifier/doi/10.1109/MLSP.2012.6349721

Direitos

http://creativecommons.org/licenses/by-nc-nd/3.0/es/

info:eu-repo/semantics/openAccess

Fonte

Proceedings of the 2012 IEEE International Workshop on Machine Learning and Signal Processing (MLSP) | 2012 IEEE International Workshop on Machine Learning for Signal Processing, Sept. 23–26, 2012, Santander, Spain | 23/09/2012 - 26/02/2014 | Santander

Palavras-Chave #Electrónica #Robótica e Informática Industrial #Telecomunicaciones
Tipo

info:eu-repo/semantics/conferenceObject

Ponencia en Congreso o Jornada

PeerReviewed