Sparse spectral analysis of atrial fibrillation electrograms
Data(s) |
2012
|
---|---|
Resumo |
Atrial fibrillation (AF) is a common heart disorder. One of the most prominent hypothesis about its initiation and maintenance considers multiple uncoordinated activation foci inside the atrium. However, the implicit assumption behind all the signal processing techniques used for AF, such as dominant frequency and organization analysis, is the existence of a single regular component in the observed signals. In this paper we take into account the existence of multiple foci, performing a spectral analysis to detect their number and frequencies. In order to obtain a cleaner signal on which the spectral analysis can be performed, we introduce sparsity-aware learning techniques to infer the spike trains corresponding to the activations. The good performance of the proposed algorithm is demonstrated both on synthetic and real data. RESUMEN. Algoritmo basado en técnicas de regresión dispersa para la extracción de las señales cardiacas en pacientes con fibrilación atrial (AF). |
Formato |
application/pdf |
Identificador | |
Idioma(s) |
eng |
Publicador |
E.U.I.T. Telecomunicación (UPM) |
Relação |
http://oa.upm.es/22893/1/INVE_MEM_2012_153261.pdf http://mlsp2012.conwiz.dk/ info:eu-repo/semantics/altIdentifier/doi/10.1109/MLSP.2012.6349721 |
Direitos |
http://creativecommons.org/licenses/by-nc-nd/3.0/es/ info:eu-repo/semantics/openAccess |
Fonte |
Proceedings of the 2012 IEEE International Workshop on Machine Learning and Signal Processing (MLSP) | 2012 IEEE International Workshop on Machine Learning for Signal Processing, Sept. 23–26, 2012, Santander, Spain | 23/09/2012 - 26/02/2014 | Santander |
Palavras-Chave | #Electrónica #Robótica e Informática Industrial #Telecomunicaciones |
Tipo |
info:eu-repo/semantics/conferenceObject Ponencia en Congreso o Jornada PeerReviewed |