830 resultados para ALXGA1-XAS ALLOYS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The addition of both Ti-C and Cr as grain refiners in Nd-Fe-B nanocomposites substantially increases the coercive field Hc. This motived our investigation of the effect of Ti-C and Cr on Pr-Fe-B nanocomposites. Melt-spun ribbons of composition (Pr(9.5)Fe(84.5)B(6))(0.97-x)Cr(x)(TiC)(0.03)(x = 0; 0.25; 0.5; 0.75; 1) and (Nd(9.5)Fe(84.5)B(6))(0.97-x)Cr(x)(TiC)(0.03)(x = 0.5 and 1) were produced for study. For a Pr nanocomposite with 1% Cr, Hc = 12.5 kOe. However, the energy product was limited to 13.6 MGOe by the remanence value. Rietveld analysis of X-ray spectra showed the ribbons to consist of predominantly hard (similar to 70 wt%) R(2)Fe(14)B, the soft phase being (similar to 30 wt%) alpha-Fe. Mossbauer measurements at 300 K are consistent with a reduced hyperfine field for the hard magnetic phase due to the Cr addition. Analysis of transmission electron microscopy images showed the Pr nanocomposite with 1% Cr to have an increased average grain size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present theoretical photoluminescence (PL) spectra of undoped and p-doped Al(x)In(1-xy)Ga(y)N/Al(X)In(1) (X) (Y)Ga(Y)N double quantum wells (DQWs). The calculations were performed within the k.p method by means of solving a full eight-band Kane Hamiltonian together with the Poisson equation in a plane wave representation, including exchange-correlation effects within the local density approximation. Strain effects due to the lattice mismatch are also taken into account. We show the calculated PL spectra, analyzing the blue and red-shifts in energy as one varies the spike and the well widths, as well as the acceptor doping concentration. We found a transition between a regime of isolated quantum wells and that of interacting DQWs. Since there are few studies of optical properties of quantum wells based on nitride quaternary alloys, the results reported here will provide guidelines for the interpretation of forthcoming experiments. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium alloys, alloys, especially beta-type alloys containing beta-stabilizing elements, constitute a highly versatile category of metallic materials that have been under constant development for application in orthopedics and dentistry. This type of alloy generally presents a high mechanical strength-to-weight ratio, excellent corrosion resistance and low elastic modulus. The purpose of this study is to evaluate the cytotoxicity and adhesion of fibroblast cells on titanium alloy substrates containing Nb, Ta, Zr, Cu, Sn and Mo alloying elements. Cells cultured on polystyrene were used as controls. In vitro results with Vero cells demonstrated that the tested materials, except Cu-based alloy, presented high viability in short-term testing. Adhesion of cells cultured on disks showed no differences between the materials and reference except for the Ti-Cu alloy, which showed reduced adhesion attributed to poor metabolic activity. Titanium alloys with the addition of Nb, Ta, Zr, Sn and Mo elements show a promising potential for biomedical applications. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pt monolayers deposited on carbon- supported Ru and Rh nanoparticles were investigated as electrocatalysts for ethanol oxidation. Electronic features of the Pt monolayers were studied by in situ XANES (X-ray absorption near-edge structure). The electrochemical activity was investigated by cyclic voltammetry and cronoamperometric experiments. Spectroscopic and electrochemical results were compared to those obtained on carbon-supported Pt-Ru and Pt-Rh alloys, and Pt E-TEK. XAS results indicate a modification of the Pt 5d band due to geometric and electronic interactions with the Ru ant Rh substrates, but the effect of withdrawing electrons from Pt is less pronounced in relation to that for the corresponding alloys. Electrochemical stripping of adsorbed CO, which is one of the intermediates, and the currents for the oxidation of ethanol show faster kinetics on the Pt monolayer deposited on Ru nanoparticles, and an activity that exceeds that of conventional catalysts with much larger amounts of platinum. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work investigates the effects of carbon-supported Pt, Pt-Ru, Pt-Rh and Pt-Ru-Rh alloy electrocatalysts oil the yields of CO2 and acetic acid as electro-oxidation products of ethanol. Electronic and structural features of these metal alloys were studied by in situ X-ray absorption spectroscopy (XAS). The electrochemical activity was investigated by polarization experiments and the reaction intermediates and products were analyzed by in situ Fourier Transform Infra-Red Spectroscopy (FTIR). Electrochemical stripping of CO. which is one of the adsorbed intermediates, presented a faster oxidation kinetics on the Pt-Ru electrocatalyst, and similar rates of reaction on Pt-Rh and Pt. The electrochemical current of ethanol oxidation showed a higher value and the onset potential was less positive oil Pt-Ru. However, in situ FTIR spectra evidenced that the CO2/acetic acid ratio is higher for the materials with Rh, mainly at lower potentials. These results indicate that the Ru atoms act mainly by providing oxygenated species for the oxidation of ethanol intermediates, and point out ail important role of Rh on the C-C bond dissociation. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium alloys normally contain oxygen, nitrogen, or carbon as impurities, and although this concentration is low, these impurities cause changes in the mechanical properties of Ti alloys. Oxygen is a strong alpha-phase stabilizer and its addition causes solid-solution strengthening, shape memory effect, and superelasticity. The most promising alloys are those with Nb, Zr, Ta, and Mo as alloying elements. In this paper, the preparation, processing, and characterization of Ti-Mo alloys (5 and 10 wt%) used as biomaterials are presented, along with the influence of oxygen on their mechanical properties. The addition of oxygen causes an increase in the elasticity modulus of the Ti-5Mo alloy due to an increase in the alpha' phase volume fraction, which possesses a higher modulus than the alpha '' phase. Ti-10Mo possesses a mixture between alpha '' and beta phases, oxygen enters these two structures and causes a dominating effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The FePt alloy undergoes the cubic to tetragonal lattice transformation in the ferromagnetic state. We calculated the electronic structure for both cubic and tetragonal structures using the FPLAPW method with APW + lo. Comparing the density of states of the cubic and tetragonal structures, it is expected that the lattice transformation is caused by the band Jahn-Teller effect. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium alloys are excellent implant materials for orthopedic applications due to their desirable properties, such as good corrosion resistance, low elasticity modulus, and excellent biocompatibility. The presence of interstitial elements (such as oxygen and nitrogen) causes strong changes in the material's mechanical properties, mainly in its elastic properties. Study of the interaction among interstitial elements present in metals began with Snoek's postulate, that a stress-induced ordering of interstitials gives rise to a peak in the mechanical relaxation (internal friction) spectra. In the mechanical relaxation spectra, each species of interstitial solute atom gives rise to a distinct Snoek's peak, whose temperature and position depend on the measurement frequency. This effect is very interesting because its peculiar parameters are directly related to the diffusion coefficient (D) for the interstitial solute. This paper presents a study of diffusion of heavy interstitial elements in Ti-35Nb-7Zr-5Ta alloys using mechanical spectroscopy. Pre-exponential factors and activation energies are calculated for oxygen and nitrogen in theses alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metals with a bcc crystalline structure such as Ti-13V-11Cr-3Al alloys have their physical properties significantly changed through the addition of interstitial elements such as oxygen and nitrogen. These metals can dissolve substantial amounts of interstitial elements forming solid solutions. Mechanical spectroscopy measurements constitute a powerful tool for studying interactions of these interstitial elements with other elements that make up the alloy. From these measurements, it is possible to obtain information regarding diffusion, interstitial concentration, interaction between interstitials, and other imperfections of the crystalline lattice, In this paper, Ti-13V-11Cr-3Al alloys with several amount of nitrogen, in a solid solution, were studied using mechanical spectroscopy (internal friction) measurements. The results presented complex internal friction spectra which were resolved in a series of constituent Debye peaks corresponding to different interactions and interstitial diffusion coefficients. Pre-exponential factors and activation energies were calculated for nitrogen in theses alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical properties of metals with a body-centered cubic (bcc) structure, such as Nb, Ta, V, and their alloys, are modified with the introduction of interstitial impurities, such as O, N, C, or H. These metals can dissolve great amounts of O and N, for example, to form solid solutions. The interstitial solute atoms (ISA) in metals with a bcc structure occupy octahedral sites and cause local distortion with tetragonal symmetry. So ISA in these metals forms an elastic dipole that can align along one of the three cubic axis of the crystal. In the present paper, the torsion pendulum technique was employed for the investigation of various interactions among the metallic matrix and different interstitial solutes in the Nb-46wt%Ti alloy. From the relaxation spectra, we obtained the diffusion coefficients, pre-exponential factors, and activation energies for nitrogen in the Nb-46wt%Ti alloy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium alloys are favorable implant materials for orthopedic applications, due to their desirable properties such as good corrosion resistance, low elasticity modulus, and excellent biocornpatibility. The research on titanium alloys is concentrated in the beta type, as the Ti-20Mo alloys and the addition of interstitial elements in these metals cause changes in their mechanical properties. The mechanical spectroscopy measurements have been frequently used in order to verify the behavior of these interstitials atoms in metallic alloys. This paper presents the study of oxygen diffusion in Ti-20Mo alloys using mechanical spectroscopy measurements. A thermally activated relaxation structure was observed in the sample after oxygen doping. It was associated with the interstitial diffusion of oxygen atoms in a solid solution in the alloy. The diffusion coefficient for the oxygen diffusion in the alloy was obtained by the frequency dependence of the peak temperature and by using a simple mathematical treatment of the relaxation structure and the Arrhenius law.