904 resultados para 220316 Philosophy of Specific Cultures (incl. Comparative Philosophy)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The exact expressions for the partition function (Q) and the coefficient of specific heat at constant volume (Cv) for a rotating-anharmonic oscillator molecule, including coupling and rotational cut-off, have been formulated and values of Q and Cv have been computed in the temperature range of 100 to 100,000 K for O2, N2 and H2 gases. The exact Q and Cv values are also compared with the corresponding rigid-rotator harmonic-oscillator (infinite rotational and vibrational levels) and rigid-rotator anharmonic-oscillator (infinite rotational levels) values. The rigid-rotator harmonic-oscillator approximation can be accepted for temperatures up to about 5000 K for O2 and N2. Beyond these temperatures the error in Cv will be significant, because of anharmonicity and rotational cut-off effects. For H2, the rigid-rotator harmonic-oscillator approximation becomes unacceptable even for temperatures as low as 2000 K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein Kinase-Like Non-kinases (PKLNKs), which are closely related to protein kinases, lack the crucial catalytic aspartate in the catalytic loop, and hence cannot function as protein kinase, have been analysed. Using various sensitive sequence analysis methods, we have recognized 82 PKLNKs from four higher eukaryotic organisms, namely, Homo sapiens, Mus musculus, Rattus norvegicus, and Drosophila melanogaster. On the basis of their domain combination and function, PKLNKs have been classified mainly into four categories: (1) Ligand binding PKLNKs, (2) PKLNKs with extracellular protein-protein interaction domain, (3) PKLNKs involved in dimerization, and (4) PKLNKs with cytoplasmic protein-protein interaction module. While members of the first two classes of PKLNKs have transmembrane domain tethered to the PKLNK domain, members of the other two classes of PKLNKs are cytoplasmic in nature. The current classification scheme hopes to provide a convenient framework to classify the PKLNKs from other eukaryotes which would be helpful in deciphering their roles in cellular processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phylogenetic studies of cyanobacterial lichens Lichens are symbiotic assemblages between fungi (mycobiont) and green algae (phycobiont) or/and cyanobacteria (cyanobiont). Fossil records show that lichen-like symbioses occurred already 600 million years ago. Lichen symbiosis has since then become an important life strategy for the Fungi, particularly for species in the phylum Ascomycota as approximately 98% of the lichenized fungal species are ascomycetes. The taxonomy of lichen associations is based on the mycobiont. We reconstructed, using DNA sequence data, hypotheses of phylogenetic relationships of lichen-forming fungi that include species associated with cyanobacteria. These hypotheses of phylogeny should form the basis for the taxonomy. They also allowed studies of the origin and the evolution of specific symbioses. Genetic diversity and phylogenetic relationships of symbiotic cyanobionts were also studied in order to examine selectivity of cyanobionts and mycobionts as well as possible co-evolution between partners involved in lichen associations. The suggested circumscription of the family Stereocaulaceae to include Stereocaulon and Lepraria is supported. The recently described crustose Stereocaulon species seem to be correctly placed in the genus, although Stereocaulon traditionally included only fruticose species. The monospecific crustose genus Muhria is also shown to be best placed in Stereocaulon. Family Lobariaceae as currently delimited is monophyletic. Within Lobariaceae genus Sticta including Dendriscocaulon dendroides form a monophyletic group while the genera Lobaria and Pseudocyphellaria are non-monophyletic. A new classification of Lobariaceae is obviously needed. Further studies are however required before a final proposal for a new classification can be made. Our results show that the cyanobacterial symbiotic state has been gained repeatedly in the Ascomycota while losses of symbiotic cyanobacteria appear to be rare. The symbiosis with green algae is confirmed to have been gained repeatedly in Ascomycota but also repeatedly lost. Cyanobacterial symbioses therefore seem to be more stable than green algal associations. Cyanobacteria are perhaps more beneficial for the lichen fungi and therefore maintained. The results indicate a dynamic association of the lichen symbiosis. This evolutionary instability will perhaps be important for the lichen fungi as the utilization of options will perhaps enable lichens to colonize new substrates and survive environmental changes. Some cyanobacterial lichen genera seem to be highly selective towards the cyanobiont while others form symbioses with a broad spectrum of cyanobacteria. No evidence of co-evolution between fungi and cyanobacteria in cyanolichens could be demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The significance of carbohydrate-protein interactions in many biological phenomena is now widely acknowledged and carbohydrate based pharmaceuticals are under intensive development. The interactions between monomeric carbohydrate ligands and their receptors are usually of low affinity. To overcome this limitation natural carbohydrate ligands are often organized as multivalent structures. Therefore, artificial carbohydrate pharmaceuticals should be constructed on the same concept, as multivalent carbohydrates or glycoclusters. Infections of specific host tissues by bacteria, viruses, and fungi are among the unfavorable disease processes for which suitably designed carbohydrate inhibitors represent worthy targets. The bacterium Helicobacter pylori colonizes more than half of all people worldwide, causing gastritis, gastric ulcer, and conferring a greater risk of stomach cancer. The present medication therapy for H. pylori includes the use of antibiotics, which is associated with increasing incidence of bacterial resistance to traditional antibiotics. Therefore, the need for an alternative treatment method is urgent. In this study, four novel synthesis procedures of multivalent glycoconjugates were created. Three different scaffolds representing linear (chondroitin oligomer), cyclic (γ-cyclodextrin), and globular (dendrimer) molecules were used. Multivalent conjugates were produced using the human milk type oligosaccharides LNDFH I (Lewis-b hexasaccharide), LNnT (Galβ1-4GlcNAcβ1-3Galβ1-4Glc), and GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glc all representing analogues of the tissue binding epitopes for H. pylori. The first synthetic method included the reductive amination of scaffold molecules modified to express primary amine groups, and in the case of dendrimer direct amination to scaffold molecule presenting 64 primary amine groups. The second method described a direct procedure for amidation of glycosylamine modified oligosaccharides to scaffold molecules presenting carboxyl groups. The final two methods that were created both included an oxime-linkage on linkers of different length. All the new synthetic procedures synthesized had the advantage of using unmodified reducing sugars as starting material making it easy to synthesize glycoconjugates of different specificity. In addition, the binding activity of an array of neoglycolipids to H. pylori was studied. Consequently, two new neolacto-based structures, Glcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-Cer and GlcAβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-Cer, with binding activity toward H. pylori were discovered. Interestingly, N-methyl and N-ethyl amide modification of the GlcAβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-Cer glucuronic acid residue resulted in more effective H. pylori binding epitopes than the parent molecule.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recognition of a specific DNA sequence by a protein is probably the best example of macromolecular interactions leading to various events. It is a prerequisite to understanding the basis of protein-DNA interactions to obtain a better insight into fundamental processes such as transcription, replication, repair, and recombination. DNA methyltransferases with varying sequence specificities provide an excellent model system for understanding the molecular mechanism of specific DNA recognition. Sequence comparison of cloned genes, along with mutational analyses and recent crystallographic studies, have clearly defined the functions of various conserved motifs. These enzymes access their target base in an elegant manner by flipping it out of the DNA double helix. The drastic protein-induced DNA distortion, first reported for HhaI DNA methyltransferase, appears to be a common mechanism employed by various proteins that need to act on bases. A remarkable feature of the catalytic mechanism of DNA (cytosine-5) methyltransferases is the ability of these enzymes to induce deamination of the target cytosine in the absence of S-adenosyl-L-methionine or its analogs. The enzyme-catalyzed deamination reaction is postulated to be the major cause of mutational hotspots at CpG islands responsible for various human genetic disorders. Methylation of adenine residues in Escherichia coli is known to regulate various processes such as transcription, replication, repair, recombination, transposition, and phage packaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Asbestos is a well known cancer-causing mineral fibre, which has a synergistic effect on lung cancer risk in combination with tobacco smoking. Several in vitro and in vivo experiments have demonstrated that asbestos can evoke chromosomal damage and cause alterations as well as gene expression changes. Lung tumours, in general, have very complex karyotypes with several recurrently gained and lost chromosomal regions and this has made it difficult to identify specific molecular changes related primarily to asbestos exposure. The main aim of these studies has been to characterize asbestos-related lung cancer at a molecular level. Methods: Samples from asbestos-exposed and non-exposed lung cancer patients were studied using array comparative genomic hybridization (aCGH) and fluorescent in situ hybridization (FISH) to detect copy number alterations (CNA) as well as microsatellite analysis to detect allelic imbalance (AI). In addition, asbestos-exposed cell lines were studied using gene expression microarrays. Results: Eighteen chromosomal regions showing differential copy number in the lung tumours of asbestos-exposed patients compared to those of non-exposed patients were identified. The most significant differences were detected at 2p21-p16.3, 5q35.3, 9q33.3-q34.11, 9q34.13-q34.3, 11p15.5, 14q11.2 and 19p13.1-p13.3 (p<0.005). The alterations at 2p and 9q were validated and characterized in detail using AI and FISH analysis in a larger study population. Furthermore, in vitro studies were performed to examine the early gene expression changes induced by asbestos in three different lung cell lines. The results revealed specific asbestos-associated gene expression profiles and biological processes as well as chromosomal regions enriched with genes believed to contribute to the common asbestos-related responses in the cell lines. Interestingly, the most significant region enriched with asbestos-response genes was identified at 2p22, close to the previously identified region showing asbestos-related CNA in lung tumours. Additionally, in this thesis, the dysregulated biological processes (Gene Ontology terms) detected in the cell line experiment were compared to dysregulated processes identified in patient samples in a later study (Ruosaari et al., 2008a). Commonly affected processes such as those related to protein ubiquitination, ion transport and surprisingly sensory perception of smell were identified. Conclusions: The identification of specific CNA and dysregulated biological processes shed some light on the underlying genes acting as mediators in asbestos-related lung carcinogenesis. It is postulated that the combination of several asbestos-specific molecular alterations could be used to develop a diagnostic method for the identification of asbestos-related lung cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Viruses are submicroscopic, infectious agents that are obligate intracellular parasites. They adopt various types of strategies for their parasitic replication and proliferation in infected cells. The nucleic acid genome of a virus contains information that redirects molecular machinery of the cell to the replication and production of new virions. Viruses that replicate in the cytoplasm and are unable to use the nuclear transcription machinery of the host cell have developed their own transcription and capping systems. This thesis describes replication strategies of two distantly related viruses, hepatitis E virus (HEV) and Semliki Forest virus (SFV), which belong to the alphavirus-like superfamily of positive-strand RNA viruses. We have demonstrated that HEV and SFV share a unique cap formation pathway specific for alphavirus-like superfamily. The capping enzyme first acts as a methyltransferase, catalyzing the transfer of a methyl group from S-adenosylmethionine to GTP to yield m7GTP. It then transfers the methylated guanosine to the end of viral mRNA. Both reactions are virus-specific and differ from those described for the host cell. Therefore, these capping reactions offer attractive targets for the development of antiviral drugs. Additionally, it has been shown that replication of SFV and HEV takes place in association with cellular membranes. The origin of these membranes and the intracellular localization of the components of the replication complex were studied by modern microscopy techniques. It was demonstrated that SFV replicates in cytoplasmic membranes that are derived from endosomes and lysosomes. According to our studies, site for HEV replication seems to be the intermediate compartment which mediates the traffic between endoplasmic reticulum and the Golgi complex. As a result of this work, a unique mechanism of cap formation for hepatitis E virus replicase has been characterized. It represents a novel target for the development of specific inhibitors against viral replication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone is a mineralized tissue that enables multiple mechanical and metabolic functions to be carried out in the skeleton. Bone contains distinct cell types: osteoblasts (bone-forming cells), osteocytes (mature osteoblast that embedded in mineralized bone matrix) and the osteoclasts (bone-resorbing cells). Remodelling of bone begins early in foetal life, and once the skeleton is fully formed in young adults, almost all of the metabolic activity is in this form. Bone is constantly destroyed or resorbed by osteoclasts and then replaced by osteoblasts. Many bone diseases, i.e. osteoporosis, also known as bone loss, typically reflect an imbalance in skeletal turnover. The cyclic adenosine monophosphate (cAMP) and the cyclic guanosine monophosphate (cGMP) are second messengers involved in a variety of cellular responses to such extracellular agents as hormones and neurotransmitters. In the hormonal regulation of bone metabolism, i.e. via parathyroid hormone (PTH), parathyroid hormone-related peptide (PTHrp) and prostaglandin E2 signal via cAMP. cAMP and cGMP are formed by adenylate and guanylate cyclases and are degraded by phosphodiesterases (PDEs). PDEs determine the amplitudes of cyclic nucleotide-mediated hormonal responses and modulate the duration of the signal. The activities of the PDEs are regulated by multiple inputs from other signalling systems and are crucial points of cross-talk between the pathways. Food-derived bioactive peptides are reported to express a variety of functions in vivo. The angiotensin-converting enzymes (ACEs) are involved in the regulation of the specific maturation or degradation of a number of mammalian bioactive peptides. The bioactive peptides offer also a nutriceutical and a nutrigenomic aspect to bone cell biology. The aim of this study was to investigate the influence of PDEs and bioactive peptides on the activation and the differentiation of human osteoblast cells. The profile of PDEs in human osteoblast-like cells and the effect of glucocorticoids on the function of cAMP PDEs, were investigated at the mRNA and enzyme levels. The effects of PDEs on bone formation and osteoblast gene expression were determined with chemical inhibitors and siRNAs (short interfering RNAs). The influence of bioactive peptides on osteoblast gene expression and proliferation was studied at the mRNA and cellular levels. This work provides information on how PDEs are involved in the function and the differentiation of osteoblasts. The findings illustrate that gene-specific silencing with an RNA interference (RNAi) method is useful in inhibiting, the gene expression of specific PDEs and further, PDE7 inhibition upregulates several osteogenic genes and increases bALP activity and mineralization in human mesenchymal stem cells-derived osteoblasts. PDEs appear to be involved in a mechanism by which glucocorticoids affect cAMP signaling. This may provide a potential route in the formation of glucocorticoid-induced bone loss, involving the down-regulation of cAMP-PDE. PDEs may play an important role in the regulation of osteoblastic differentiation. Isoleucine-proline-proline (IPP), a bioactive peptide, possesses the potential to increase osteoblast proliferation, differentiation and signalling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of different donor nitrogen atoms on the strength and nature of intramolecular Se center dot center dot center dot N interactions is evaluated for organoselenium compounds having N,N-dimethylaminomethyl (dime), oxazoline (oxa) and pyridyl (py) substituents. Quantum chemical calculations on three series of compounds [2-(dime)C6H4SeX (1a-g), 2-(oxa)C6H4SeX (2a-g), 2- (py)C6H4SeX (3-ag); X=Cl, Br, OH, CN, SPh, SePh, CH3] at the B3LYP/6-31G(d) level show that the stability of different conformers depends on the strength of intramolecular nonbonded Se center dot center dot center dot N interactions. Natural bond orbital (NBO), NBO deletion and atoms in molecules (AIM) analyses suggest that the nature of the Se center dot center dot center dot N interaction is predominantly covalent and involves nN ->sigma*(Se-X) orbital interaction. In the three series of compounds, the strength of the Se center dot center dot center dot N interaction decreases in the order 3>2>1 for a particular X, and it decreases in the order Cl > Br > OH>SPh approximate to CN approximate to SePh>CH3 for all the three series 1-3. However, further analyses suggest that the differences in strength of Se center dot center dot center dot N interaction in 1-3 is predominantly determined by the distance between the Se and N atoms, which in turn is an outcome of specific structures of 1, 2 and 3, and the nature of the donor nitrogen atoms involved has very little effect on the strength of Se center dot center dot center dot N interaction. It is also observed that Se center dot center dot center dot N interaction becomes stronger in polar solvents such as CHCl3, as indicated by the shorter r(Se center dot center dot center dot N) and higher E-Se center dot center dot center dot N values in CHCl3 compared to those observed in the gas phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss two temperature accretion disk flows around rotating black holes. As we know that to explain observed hard X-rays the choice of Keplerian angular momentum profile is not unique, we consider the sub-Keplerian regime of the disk. Without any strict knowledge of the magnetic field structure, we assume the cooling mechanism is dominated by bremsstrahlung process. We show that in a range of Shakura-Sunyaev viscosity parameter 0.2 greater than or similar to alpha greater than or similar to 0.0005, flow behavior varies widely, particularly by means of the size of disk, efficiency of cooling and corresponding temperatures of ions and electrons. We also show that the disk around a rotating black hole is hotter compared to that around a Schwarzschild black hole, rendering a larger difference between ion and electron temperatures in the former case. With all the theoretical solutions in hand, finally we reproduce the observed luminosities (L) of two extreme cases-the under-fed AGNs and quasars (e.g. Sgr A') with L greater than or similar to 10(33) erg/s to ultra-luminous X-ray sources with L similar to 10(41) erg/s, at different combinations of mass accretion rate, ratio of specific heats, Shakura-Sunyaev viscosity parameter and Kerr parameter, and conclude that Sgr A' may be an intermediate spinning black hole.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inherited retinal diseases are the most common cause of vision loss among the working population in Western countries. It is estimated that ~1 of the people worldwide suffer from vision loss due to inherited retinal diseases. The severity of these diseases varies from partial vision loss to total blindness, and at the moment no effective cure exists. To date, nearly 200 mapped loci, including 140 cloned genes for inherited retinal diseases have been identified. By a rough estimation 50% of the retinal dystrophy genes still await discovery. In this thesis we aimed to study the genetic background of two inherited retinal diseases, X-linked cone-rod dystrophy and Åland Island eye disease. X-linked cone-rod dystrophy (CORDX) is characterized by progressive loss of visual function in school age or early adulthood. Affected males show reduced visual acuity, photophobia, myopia, color vision defects, central scotomas, and variable changes in fundus. The disease is genetically heterogeneous and two disease loci, CORDX1 and CORDX2, were known prior to the present thesis work. CORDX1, located on Xp21.1-11.4, is caused by mutations in the RPGR gene. CORDX2 is located on Xq27-28 but the causative gene is still unknown. Åland Island eye disease (AIED), originally described in a family living in Åland Islands, is a congenital retinal disease characterized by decreased visual acuity, fundus hypopigmentation, nystagmus, astigmatism, red color vision defect, myopia, and defective night vision. AIED shares similarities with another retinal disease, congenital stationary night blindness (CSNB2). Mutations in the L-type calcium channel α1F-subunit gene, CACNA1F, are known to cause CSNB2, as well as AIED-like disease. The disease locus of the original AIED family maps to the same genetic interval as the CACNA1F gene, but efforts to reveal CACNA1F mutations in patients of the original AIED family have been unsuccessful. The specific aims of this study were to map the disease gene in a large Finnish family with X-linked cone-rod dystrophy and to identify the disease-causing genes in the patients of the Finnish cone-rod dystrophy family and the original AIED family. With the help of linkage and haplotype analyses, we could localize the disease gene of the Finnish cone-rod dystrophy family to the Xp11.4-Xq13.1 region, and thus establish a new genetic X-linked cone-rod dystrophy locus, CORDX3. Mutation analyses of candidate genes revealed three novel CACNA1F gene mutations: IVS28-1 GCGTC>TGG in CORDX3 patients, a 425 bp deletion, comprising exon 30 and flanking intronic regions in AIED patients, and IVS16+2T>C in an additional Finnish patient with a CSNB2-like phenotype. All three novel mutations altered splice sites of the CACNA1F gene, and resulted in defective pre-mRNA splicing suggesting altered or absent channel function as a disease mechanism. The analyses of CACNA1F mRNA also revealed novel alternative wt splice variants, which may enhance channel diversity or regulate the overall expression level of the channel. The results of our studies may be utilized in genetic counseling of the families, and they provide a basis for studies on the pathogenesis of these diseases. In the future, the knowledge of the genetic defects may be used in the identification of specific therapies for the patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

T cell-mediated cytotoxicity against Mycobacterium tuberculosis (MTB)-infected macrophages may be a major mechanism of specific host defense, but little is known about such activities in the lung. Thus, the capacity of alveolar lymphocyte MTB-specific cell lines (AL) and alveolar macrophages (AM) from tuberculin skin test-positive healthy subjects to serve as CTL and target cells, respectively, in response to MTB (H37Ra) or purified protein derivative (PPD) was investigated. Mycobacterial Ag-pulsed AM were targets of blood CTL activity at E:T ratios of > or = 30:1 (51Cr release assay), but were significantly more resistant to cytotoxicity than autologous blood monocytes. PPD- plus IL-2-expanded AL and blood lymphocytes were cytotoxic for autologous mycobacterium-stimulated monocytes at E:T ratios of > or = 10:1. The CTL activity of lymphocytes expanded with PPD was predominantly class II MHC restricted, whereas the CTL activity of lymphocytes expanded with PPD plus IL-2 was both class I and class II MHC restricted. Both CD4+ and CD8+ T cells were enriched in BL and AL expanded with PPD and IL-2, and both subsets had mycobacterium-specific CTL activity. Such novel cytotoxic responses by CD4+ and CD8+ T cells may be a major mechanism of defense against MTB at the site of disease activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate viscous two-temperature accretion disc flows around rotating black holes. We describe the global solution of accretion flows with a sub-Keplerian angular momentum profile, by solving the underlying conservation equations including explicit cooling processes self-consistently. Bremsstrahlung, synchrotron and inverse Comptonization of soft photons are considered as possible cooling mechanisms. We focus on the set of solutions for sub-Eddington, Eddington and super-Eddington mass accretion rates around Schwarzschild and Kerr black holes with a Kerr parameter of 0.998. It is found that the flow, during its infall from the Keplerian to sub-Kepleria transition region to the black hole event horizon, passes through various phases of advection: the general advective paradigm to the radiatively inefficient phase, and vice versa. Hence, the flow governs a much lower electron temperature similar to 10(8)-10(9.5) K, in the range of accretion rate in Eddington units 0.01 less than or similar to (M) over dot less than or similar to 100, compared to the hot protons of temperature similar to 10(10.2)-10(11.8) K. Therefore, the solution may potentially explain the hard X-rays and gamma-rays emitted from active galactic nuclei (AGNs) and X-ray binaries. We then compare the solutions for two different regimes of viscosity. We conclude that a weakly viscous flow is expected to be cooling dominated, particularly at the inner region of the disc, compared to its highly viscous counterpart, which is radiatively inefficient. With all the solutions in hand, we finally reproduce the observed luminosities of the underfed AGNs and quasars (e. g. Sgr A*) to ultraluminous X-ray sources (e. g. SS433), at different combinations of input parameters, such as the mass accretion rate and the ratio of specific heats. The set of solutions also predicts appropriately the luminosity observed in highly luminous AGNs and ultraluminous quasars (e. g. PKS 0743-67).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Boron Nitride Nanotubes (BNNTs) have alternating boron and nitrogen atoms in graphite like network and are strongly polar in nature due to a large charge on boron and nitrogen atoms. Hence electrostatic interactions are expected to play an important role in determining the elastic properties of BNNTs. In the absence of specific partial atomic charge information for boron and nitrogen, we have studied the elastic properties BNNTs varying the partial atomic charges on boron and nitrogen. We have computed Young modulus (Y) and Shear modulus (G) of BNNT as a function of the tube radius and number of walls using molecular mechanics calculation. Our calculation shows that Young modulus of BNNTs increases with increase in magnitude of the partial atomic charge on B and N and can be larger than the Young modulus of CNTs of same radius. This is in contrast to the earlier finding that CNTs has the largest tensile strength (PRL, 80, 4502, 1998). Shear modulus, on the other hand depends weakly on the magnitude of partial atomic charge and is less than the shear modulus of the CNT. The values obtained for Young modulus and Shear modulus are in excellent agreement with the available experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molten globule-like intermediates have been shown to occur during protein folding and are thought to be involved in protein translocation and membrane insertion. However, the determinants of molten globule stability and the extent of specific packing in molten globules is currently unclear. Using far- and near-UV CD and intrinsic and ANS fluorescence, we show that four periplasmic binding proteins (LBP, LIVBP, MBP, and RBP) form molten globules at acidic pH values ranging from 3.0 to 3.4. Only two of these (LBP and LIVBP) have similar sequences, but all four proteins adopt similar three-dimensional structures. We found that each of the four molten globules binds to its corresponding ligand without conversion to the native state. Ligand binding affinity measured by isothermal titration calorimetry for the molten globule state of LIVBP was found to be comparable to that of the corresponding native state, whereas for LBP, MBP, and RBP, the molten globules bound ligand with approximately 5-30-fold lower affinity than the corresponding native states. All four molten globule states exhibited cooperative thermal unfolding assayed by DSC. Estimated values of Delta C-p of unfolding show that these molten globule states contain 28-67% of buried surface area relative to the native states. The data suggest that molten globules of these periplasmic binding proteins retain a considerable degree of long range order. The ability of these sequentially unrelated proteins to form highly ordered molten globules may be related to their large size as well as an intrinsic property of periplasmic binding protein folds.