915 resultados para standard error
Resumo:
Rising concentrations of atmospheric CO2 are changing the carbonate chemistry of the oceans, a process known as ocean acidification (OA). Absorption of this CO2 by the surface oceans is increasing the amount of total dissolved inorganic carbon (DIC) and bicarbonate ion (HCO3) available for marine calcification yet is simultaneously lowering the seawater pH and carbonate ion concentration ([CO3]), and thus the saturation state of seawater with respect to aragonite. We investigated the relative importance of [HCO3] versus [CO3] for early calcification by new recruits (primary polyps settled from zooxanthellate larvae) of two tropical coral species, Favia fragum and Porites astreoides. The polyps were reared over a range of ?ar values, which were manipulated by both acid-addition at constant pCO2 (decreased total [HCO3] and [CO3]) and by pCO2 elevation at constant alkalinity (increased [HCO3], decreased [CO3]). Calcification after 2 weeks was quantified by weighing the complete skeleton (corallite) accreted by each polyp over the course of the experiment. Both species exhibited the same negative response to decreasing [CO3] whether ?ar was lowered by acid-addition or by pCO2 elevation-calcification did not follow total DIC or [HCO3]. Nevertheless, the calcification response to decreasing [CO3] was nonlinear. A statistically significant decrease in calcification was only detected between Omega aragonite = <2.5 and Omega aragonite = 1.1-1.5, where calcification of new recruits was reduced by 22-37% per 1.0 decrease in Omega aragonite. Our results differ from many previous studies that report a linear coral calcification response to OA, and from those showing that calcification increases with increasing [HCO3]. Clearly, the coral calcification response to OA is variable and complex. A deeper understanding of the biomineralization mechanisms and environmental conditions underlying these variable responses is needed to support informed predictions about future OA impacts on corals and coral reefs.
Resumo:
A compilation of basal dates of peatland initiation across the northern high latitudes, associated metadata including location, age, raw and calibrated radiocarbon ages, and associated references. Includes previously published datasets from sources below as well as 365 new data points.
Resumo:
Volcanic CO2 seeps provide opportunities to investigate the effects of ocean acidification on organisms in the wild. To understand the influence of increasing CO2 concentrations on the metabolic rate (oxygen consumption) and the development of ocellated wrasse early life stages, we ran two field experiments, collecting embryos from nesting sites with different partial pressures of CO2 [pCO2; ambient (400 µatm) and high (800-1000 µatm)] and reciprocally transplanting embryos from ambient- to high-CO2 sites for 30 h. Ocellated wrasse offspring brooded in different CO2 conditions had similar responses, but after transplanting portions of nests to the high-CO2 site, embryos from parents that spawned in ambient conditions had higher metabolic rates. Although metabolic phenotypic plasticity may show a positive response to high CO2, it often comes at a cost, in this case as a smaller size at hatching. This can have adverse effects because smaller larvae often exhibit a lower survival in the wild. However, the adverse effects of increased CO2 on metabolism and development did not occur when embryos from the high-CO2 nesting site were exposed to ambient conditions, suggesting that offspring from the high-CO2 nesting site could be resilient to a wider range of pCO2 values than those belonging to the site with present-day pCO2 levels. Our study identifies a crucial need to increase the number of studies dealing with these processes under global change trajectories and to expand these to naturally high-CO2 environments, in order to assess further the adaptive plasticity mechanism that encompasses non-genetic inheritance (epigenetics) through parental exposure and other downstream consequences, such as survival of larvae.
Resumo:
The soil heat flux and soil thermal diffusivity are important components of the surface energy balance, especially in ar id and semi-arid regions. The obj ective of this work was to carry out to estimate the soil heat flux from th e soil temperature measured at a single depth, based on the half-order time derivative met hod proposed by Wang and Bras (1999), and to establish a method capable of es timating the thermal diffusivity of the soil, based on the half order derivative, from the temporal series of soil temperature at two depths. The results obtained in the estimates of soil heat flux were compared with the values of soil heat flux measured through flux plates, and the thermal di ffusivity estimated was compared with the measurements carried out in situ. The results obtained showed excellent concordance between the estimated and measured soil heat flux, with correlation (r), coeffici ent of determination (R 2 ) and standard error (W/m 2 ) of: r = 0.99093, R 2 = 0.98194 and error = 2.56 (W/m 2 ) for estimated period of 10 days; r = 0,99069, R 2 = 0,98147 and error = 2.59 (W/m 2 ) for estimated period of 30 days; and r = 0,98974, R 2 = 0,97958 and error = 2.77 (W/m 2 ) for estimated period of 120 days. The values of thermal di ffusivity estimated by the proposed method showed to be coherent and consis tent with in situ measured va lues, and with the values found in the literature usi ng conventional methods.
Resumo:
The timing and nature of the penultimate deglaciation, also known as Termination II (T-II), is subject of controversial discussions due to the scarcity of precisely-dated palaeoclimate records. Here we present a new precisely-dated and highly-resolved multi-proxy stalagmite record covering T-II from the high alpine Schafsloch Cave in Switzerland, an area where climate is governed by the North Atlantic. The inception of stalagmite growth at 137.4 ± 1.4 kyr before present (BP) indicates the presence of drip water and cave air temperatures of above 0 °C, and is related to a climate-induced change in the thermal state (from cold-to warm-based) of the glacier above the cave. The cessation of stalagmite growth between 133.1 ± 0.7 and 131.9 ± 0.6 kyr BP is most likely related to distinct drop in temperature associated with Heinrich stadial 11. The resumption of stalagmite growth at 131.9 ± 0.6 kyr BP is accompanied by an abrupt increase in temperature and precipitation as indicated by distinct shifts in the oxygen and carbon isotopic composition as well as in trace element concentrations. The mid-point of T-II is around 131.8 ± 0.6 kyr BP in the Schafsloch Cave record is significantly earlier compared to the age of 129.1 ± 0.1 kyr BP in the Sanbao Cave record from China. The different ages between both records can be best explained by the competing effects of insolation and glacial boundary forcing on seasonality and snow cover extent in Eurasia.
Effect of ocean warming and acidification on the early life stages of subtropical Acropora spicifera
Resumo:
This study investigated the impacts of acidified seawater (pCO2 900 µatm) and elevated water temperature (+3 °C) on the early life history stages of Acropora spicifera from the subtropical Houtman Abrolhos Islands (28°S) in Western Australia. Settlement rates were unaffected by high temperature (27 °C, 250 µatm), high pCO2 (24 °C, 900 µatm), or a combination of both high temperature and high pCO2 treatments (27 °C, 900 µatm). There were also no significant differences in rates of post-settlement survival after 4 weeks of exposure between any of the treatments, with survival ranging from 60 to 70 % regardless of treatment. Similarly, calcification, as determined by the skeletal weight of recruits, was unaffected by an increase in water temperature under both ambient and high pCO2 conditions. In contrast, high pCO2 significantly reduced early skeletal development, with mean skeletal weight in the high pCO2 and combined treatments reduced by 60 and 48 %, respectively, compared to control weights. Elevated temperature appeared to have a partially mitigative effect on calcification under high pCO2; however, this effect was not significant. Our results show that rates of settlement, post-settlement survival, and calcification in subtropical corals are relatively resilient to increases in temperature. This is in marked contrast to the sensitivity to temperature reported for the majority of tropical larvae and recruits in the literature. The subtropical corals in this study appear able to withstand an increase in temperature of 3 °C above ambient, indicating that they may have a wider thermal tolerance range and may not be adversely affected by initial increases in water temperature from subtropical 24 to 27 °C. However, the reduction in skeletal weight with high pCO2 indicates that early skeletal formation will be highly vulnerable to the changes in ocean pCO2 expected to occur over the twenty-first century, with implications for their longer-term growth and resilience.
Resumo:
We present new d13C measurements of atmospheric CO2 covering the last glacial/interglacial cycle, complementing previous records covering Terminations I and II. Most prominent in the new record is a significant depletion in d13C(atm) of 0.5 permil occurring during marine isotope stage (MIS) 4, followed by an enrichment of the same magnitude at the beginning of MIS 3. Such a significant excursion in the record is otherwise only observed at glacial terminations, suggesting that similar processes were at play, such as changing sea surface temperatures, changes in marine biological export in the Southern Ocean (SO) due to variations in aeolian iron fluxes, changes in the Atlantic meridional overturning circulation, upwelling of deep water in the SO, and long-term trends in terrestrial carbon storage. Based on previous modeling studies, we propose constraints on some of these processes during specific time intervals. The decrease in d13C(atm) at the end of MIS 4 starting approximately 64 kyr B.P. was accompanied by increasing [CO2]. This period is also marked by a decrease in aeolian iron flux to the SO, followed by an increase in SO upwelling during Heinrich event 6, indicating that it is likely that a large amount of d13C-depleted carbon was transferred to the deep oceans previously, i.e., at the onset of MIS 4. Apart from the upwelling event at the end of MIS 4 (and potentially smaller events during Heinrich events in MIS 3), upwelling of deep water in the SO remained reduced until the last glacial termination, whereupon a second pulse of isotopically light carbon was released into the atmosphere.
Resumo:
Piston, gravity, and multicores as well as hydrographic data were collected along the Pacific margin of Baja California to reconstruct past variations in the intensity of the oxygen-minimum zone (OMZ). Gravity cores collected from within the OMZ north of 24°N did not contain laminated surface sediments even though bottom water oxygen (BWO) concentrations were close to 5 µmol/kg. However, many of the cores collected south of 24°N did contain millimeter- to centimeter-scale, brown to black laminations in Holocene and older sediments but not in sediments deposited during the Last Glacial Maximum. In addition to the dark laminations, Holocene sediments in Soledad Basin, silled at 290 m, also contain white coccolith laminae that probably represent individual blooms. Two open margin cores from 430 and 700 m depth that were selected for detailed radiocarbon dating show distinct transitions from bioturbated glacial sediment to laminated Holocene sediment occurring at 12.9 and 11.5 ka, respectively. The transition is delayed and more gradual (11.3-10.0 ka) in another dated core from Soledad Basin. The observations indicate that bottom-water oxygen concentrations dropped below a threshold for the preservation of laminations at different times or that a synchronous hydrographic change left an asynchronous sedimentary imprint due to local factors. With the caveat that laminated sections should therefore not be correlated without independent age control, the pattern of older sequences of laminations along the North American western margin reported by this and previous studies suggests that multiple patterns of regional productivity and ventilation prevailed over the past 60 kyr.
Resumo:
Multiproxy geologic records of d18O and Mg/Ca in fossil foraminifera from sediments under the Eastern Pacific Warm Pool (EPWP) region west of Central America document variations in upper ocean temperature, pycnocline strength, and salinity (i.e., net precipitation) over the past 30 kyr. Although evident in the paleotemperature record, there is no glacial-interglacial difference in paleosalinity, suggesting that tropical hydrologic changes do not respond passively to high-latitude ice sheets and oceans. Millennial variations in paleosalinity with amplitudes as high as 4 practical salinity units occur with a dominant period of 3-5 ky during the glacial/deglacial interval and 1.0-1.5 ky during the Holocene. The amplitude of the EPWP paleosalinity changes greatly exceeds that of published Caribbean and western tropical Pacific paleosalinity records. EPWP paleosalinity changes correspond to millennial-scale climate changes in the surface and deep Atlantic and the high northern latitudes, with generally higher (lower) paleosalinity during cold (warm) events. In addition to Intertropical Convergence Zone (ITCZ) dynamics, which play an important role in tropical hydrologic variability, changes in Atlantic-Pacific moisture transport, which is closely linked to ITCZ dynamics, may also contribute to hydrologic variations in the EPWP. Calculations of interbasin salinity average and interbasin salinity contrast between the EPWP and the Caribbean help differentiate long-term changes in mean ITCZ position and Atlantic-Pacific moisture transport, respectively.
Resumo:
The modern Aegean Sea is an important source of deep water for the eastern Mediterranean. Its contribution to deep water ventilation is known to fluctuate in response to climatic variation on a decadal timescale. This study uses marine micropalaeontological and stable isotope data to investigate longer-term variability during the late glacial and Holocene, in particular that associated with the deposition of the early Holocene dysoxic/anoxic sapropel S1. Concentrating on the onset of sapropel-forming conditions, we identify the start of 'seasonal' stratification and highlight a lag in d18O response of the planktonic foraminifer N. pachyderma to termination T1b as identified in the d18O record of G. ruber. By use of a simple model we determine that this offset cannot be a function of bioturbation effects. The lag is of the order of 1 kyr and suggests that isolation of intermediate/deep water preceded the start of sapropel formation by up to 1.5 kyr. Using this discovery, we propose an explanation for the major unresolved problem in sapropel studies, namely, the source of nutrient supply required for export productivity to reach levels needed for sustained sapropel deposition. We suggest that nutrients had been accumulating in a stagnant basin for 1-1.5 kyr and that these accumulated resources were utilized during the deposition of S1. In addition, we provide a first quantitative estimate of the diffusive (1/e) mixing timescale for the eastern Mediterranean in its "stratified" sapropel mode, which is of the order of 450 years.
Resumo:
Atmospheric carbon dioxide (pCO2) has risen from approximately 280 to 400 ppm since the Industrial Revolution, due mainly to the combustion of fossil fuels, deforestation, and cement production. It is predicted to reach as high as 900 ppm by the end of this century. Ocean acidification resulting from the release of anthropogenic CO2 has been shown to impair the ability of some marine calcifiers to build their shells and skeletons. Here, we present the results of ocean acidification experiments designed to assess the effects of an increase in atmospheric pCO2 from ca. 448 to 827 ppm on calcification rates of the tropical urchin Echinometra viridis. Experiments were conducted under the urchin's winter (20 °C) and summer (30 °C) water temperatures in order to identify seasonal differences in the urchin's response to ocean acidification. The experiments reveal that calcification rates decreased for urchins reared under elevated pCO2, with the decline being more pronounced under wintertime temperatures than under summertime temperatures. These results indicate that the urchin E. viridis will be negatively impacted by CO2-induced ocean acidification that is predicted to occur by the end of this century. These results also suggest that impact of CO2-induced ocean acidification on urchin calcification will be more severe in the winter and in cooler waters.
Resumo:
A global sea surface temperature calibration based on the relative abundance of different morphotypes within the coccolithophore genus Gephyrocapsa in Holocene deep-sea sediments is presented. There is evidence suggesting that absolute sea surface temperature for a given location can be calculated from the relative abundance of Gephyrocapsa morphotypes in sediment samples, with a standard error comparable to temperature estimates derived from other temperature proxies such as planktic foraminifera transfer functions. A total of 110 Holocene sediment samples were selected from the Pacific, Indian, and Atlantic Oceans covering a mean sea surface temperature gradient from 13.6° to 29.3°C. Standard multiple linear regression analyses were applied to this data set, linking the relative abundance of Gephyrocapsa morphotypes to sea surface temperature. The best model revealed an r**2 of 0.83 with a standard residual error of 1.78°C for the estimation of mean sea surface temperature. This new proxy provides a unique opportunity for the reconstruction of paleotemperatures with a very small amount of sample material due to the minute size of coccoliths, permitting examination of thinly laminated sediments (e.g., a pinhead of material from laminated sediments for the reconstruction of annual sea surface temperature variations). Such fine-scale resolution is currently not possible with any other proxy. Application of this new paleotemperature proxy may allow new paleoenvironmental interpretations in the late Quaternary period and discrepancies between the different currently used paleotemperature proxies might be resolved.
Resumo:
This synthesis dataset contains records of freshwater peat and lake sediments from continental shelves and coastal areas. Information included is site location (when available), thickness and description of terrestrial sediments as well as underlying and overlying sediments, dates (when available), and references.
Resumo:
We present an almost 3 year long time series of shell fluxes and oxygen isotopes of left-coiling Neogloboquadrina pachyderma and Turborotalita quinqueloba from sediment traps moored in the deep central Irminger Sea. We determined their response to the seasonal change from a deeply mixed water column with occasional deep convection in winter to a thermally stratified water column with a surface mixed layer (SML) of around 50 m in summer. Both species display very low fluxes during winter with a remnant summer population holding out until replaced by a vital population that seeds the subsequent blooms. This annual population overturning is marked by a 0.7 per mill increase in d18O in both species. The shell flux of N. pachyderma peaks during the spring bloom and in late summer, when stratification is close to its minimum and maximum, respectively. Both export periods contribute about equally and account for >95% of the total annual flux. Shell fluxes of T. quinqueloba show only a single broad pulse in summer, thus following the seasonal stratification cycle. The d18O of N. pachyderma reflects temperatures just below the base of the seasonal SML without offset from isotopic equilibrium. The d18O pattern of T. quinqueloba shows a nearly identical amplitude and correlates highly with the d18O of N. pachyderma. Therefore T. quinqueloba also reflects temperature near the base of the SML but with a positive offset from isotopic equilibrium. These offsets contrast with observations elsewhere and suggest a variable offset from equilibrium calcification for both species. In the Irminger Sea the species consistently show a contrast in their flux timings. Their flux-weighted delta d18O will thus dominantly be determined by seasonal temperature differences at the base of the SML rather than by differences in their depth habitat. Consequently, their sedimentary delta d18O may be used to infer the seasonal contrast in temperature at the base of the SML.
Resumo:
Bayesian adaptive methods have been extensively used in psychophysics to estimate the point at which performance on a task attains arbitrary percentage levels, although the statistical properties of these estimators have never been assessed. We used simulation techniques to determine the small-sample properties of Bayesian estimators of arbitrary performance points, specifically addressing the issues of bias and precision as a function of the target percentage level. The study covered three major types of psychophysical task (yes-no detection, 2AFC discrimination and 2AFC detection) and explored the entire range of target performance levels allowed for by each task. Other factors included in the study were the form and parameters of the actual psychometric function Psi, the form and parameters of the model function M assumed in the Bayesian method, and the location of Psi within the parameter space. Our results indicate that Bayesian adaptive methods render unbiased estimators of any arbitrary point on psi only when M=Psi, and otherwise they yield bias whose magnitude can be considerable as the target level moves away from the midpoint of the range of Psi. The standard error of the estimator also increases as the target level approaches extreme values whether or not M=Psi. Contrary to widespread belief, neither the performance level at which bias is null nor that at which standard error is minimal can be predicted by the sweat factor. A closed-form expression nevertheless gives a reasonable fit to data describing the dependence of standard error on number of trials and target level, which allows determination of the number of trials that must be administered to obtain estimates with prescribed precision.