(Appendix) Gephyrocapsa coccolith abundance and holocene paleotemperature assessment


Autoria(s): Bollmann, Jörg; Henderiks, Jorijntje; Brabec, Bernhard
Cobertura

MEDIAN LATITUDE: 6.542975 * MEDIAN LONGITUDE: -107.776743 * SOUTH-BOUND LATITUDE: -39.967000 * WEST-BOUND LONGITUDE: 2.183000 * NORTH-BOUND LATITUDE: 49.190000 * EAST-BOUND LONGITUDE: -7.800000 * DATE/TIME START: 1956-09-17T00:00:00 * DATE/TIME END: 1998-11-03T01:45:00 * MINIMUM DEPTH, sediment/rock: 0.0000 m * MAXIMUM DEPTH, sediment/rock: 30.0000 m

Data(s)

26/03/2002

Resumo

A global sea surface temperature calibration based on the relative abundance of different morphotypes within the coccolithophore genus Gephyrocapsa in Holocene deep-sea sediments is presented. There is evidence suggesting that absolute sea surface temperature for a given location can be calculated from the relative abundance of Gephyrocapsa morphotypes in sediment samples, with a standard error comparable to temperature estimates derived from other temperature proxies such as planktic foraminifera transfer functions. A total of 110 Holocene sediment samples were selected from the Pacific, Indian, and Atlantic Oceans covering a mean sea surface temperature gradient from 13.6° to 29.3°C. Standard multiple linear regression analyses were applied to this data set, linking the relative abundance of Gephyrocapsa morphotypes to sea surface temperature. The best model revealed an r**2 of 0.83 with a standard residual error of 1.78°C for the estimation of mean sea surface temperature. This new proxy provides a unique opportunity for the reconstruction of paleotemperatures with a very small amount of sample material due to the minute size of coccoliths, permitting examination of thinly laminated sediments (e.g., a pinhead of material from laminated sediments for the reconstruction of annual sea surface temperature variations). Such fine-scale resolution is currently not possible with any other proxy. Application of this new paleotemperature proxy may allow new paleoenvironmental interpretations in the late Quaternary period and discrepancies between the different currently used paleotemperature proxies might be resolved.

Formato

text/tab-separated-values, 2573 data points

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.844989

doi:10.1594/PANGAEA.844989

Idioma(s)

en

Publicador

PANGAEA

Relação

Bollmann et al. 2002 Coccolith Abundance and Holocene Paleotemperature (URI: https://www.ncdc.noaa.gov/paleo/study/8670)

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Bollmann, Jörg; Henderiks, Jorijntje; Brabec, Bernhard (2002): Global calibration of Gephyrocapsa coccolith abundance in Holocene sediments for paleotemperature assessment. Paleoceanography, 17(3), 7-1-7-9, doi:10.1029/2001PA000742

Palavras-Chave #06MT41_3; 182-1127B; A150/180; A152-84; Agadir Canyon; Angola Basin; BATS; BATS_SedTrap_10013; BC; BCR; Bermuda Atlantic Time-Series Study; Box corer; Box corer (Reineck); Brazil Basin; CALYPSO; Calypso Corer; Canary Islands; Chlorophyll a; Danuta; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; DRILL; Drilling/drill rig; East Atlantic; Elevation of event; ELT21; ELT21.011-TC; ELT48; ELT48.027A-TC; ELT48.031A-TC; ELT48.036-PC; Eltanin; ERDC; ERDC-083BX; ERDC-092BX; ERDC-129BX; Estimated; Eurydice; Event label; extracted from the World Ocean Atlas 1998 (Levitus et al., 1998); FGGE-Equator ´79 - First GARP Global Experiment; FH13; GC; GeoB1048-3; GeoB4205-1; GeoB4207-1; GeoB4216-2; GeoB4223-1; GeoB4228-1; GeoB4234-1; GeoB4237-1; GeoB4242-4; GeoB4301-1; GeoB5142-2; GeoB5559-2; Gephyrocapsa spp.; Giant box corer; GIK12309-2; GIK12310-4; GIK12329-4; GIK12337-4; GIK12345-4; GIK12347-1; GIK12392-1; GIK13519-2; GIK15612-2; GIK15627-3; GIK15637-1; GIK15669-4; GIK16869-1; GKG; Gravity corer; Gravity corer (Kiel type); Great Australian Bight; GS7805-15; Indian Ocean; INMD; INMD-048BX; INMD-065BX; INMD-072BX; INMD-074BX; INMD-104BX; INMD-110BX; INMD-115BX; INMD-127BX; Joides Resolution; KAL; Kasten corer; KC26_1362; KL_Mk; KOL; Latitude of event; Leg182; Longitude of event; M12392-1; M25; M37/1; M38/1; M41/3; M42/4b; M51; M53; M53_169-2; M57; M6/5; M6/6; M69; M69-196; MC608; MC611; MD73-006; MD73-011; MD73-022; MD75055; MD81346; MD85682; Melville; Meteor (1964); Meteor (1986); MUC; MultiCorer; Multiple; N3KF21; NOAMP III; North Atlantic; North Atlantic Ocean; Northeast Atlantic; off Gabun; off West Africa; Okada6; PC; Piston corer; Piston corer (Kiel type); Piston corer Meischner small; PLDS; PLDS-070BX; PR44-1179; RC08; RC08-91; RC08-94; RC09; RC09-104; RC09-124; RC09-126; RC09-129; RC09-77; RC10; RC10-161; RC11; RC11-10; RC11-12; RC11-124; RC11-126; RC11-128; RC11-22; RC11-230; RC12; RC12-210; RC12-266; RC12-292; RC12-340TW; RC13; RC13-17; RC13-38; Robert Conrad; Sample comment; Sea surface temperature; Sea surface temperature, annual mean; Sea surface temperature, autumn; Sea surface temperature, spring; Sea surface temperature, summer; Sea surface temperature, winter; Sierra Leone Rise; SL; South Pacific Ocean; T88-09B; T90-14P; TC; Trap, sediment, floating; TRAPSF; Trigger corer; Tyr-15; Tyr-2; Tyr-4; V10; V10-89; V15; V15-29; V16; V16-205; V19; V19-163; V19-240; V19-282; V19-41; V19-55; V20; V20-103; V20-171; V20-176; V20-228; V23; V23-101; V23-98; V26; V26-124; V26-46; V26-68; V27; V27-137; V27-144; V27-215; V28; V28-239; V29; V29-135; V29-49; V29-64; Vema; VM188-193
Tipo

Dataset