985 resultados para magnetic properties of nanostructures


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we prove that the Achilles-Manaresi multiplicity sequence, like the classical Hilbert-Samuel multiplicity, is additive with respect to the exact sequence of modules. We also prove the associativity formula for his mulitplicity sequence. As a consequence, we give new proofs for two results already known. First, the Achilles-Manaresi multiplicity sequence is an invariant up to reduction, a result first proved by Ciuperca. Second, I subset of J is a reduction of (J,M) if and only if c(0)(I(p), M(p)) = c(0)(J(p), M(p)) for all p is an element of Spec(A), a result first proved by Flenner and Manaresi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the fundamental structural properties of conducting thin films formed by implanting gold ions into polymethylmethacrylate (PMMA) polymer at 49 eV using a repetitively pulsed cathodic arc plasma gun. Transmission electron microscopy images of these composites show that the implanted ions form gold clusters of diameter similar to 2-12 nm distributed throughout a shallow, buried layer of average thickness 7 nm, and small angle x-ray scattering (SAXS) reveals the structural properties of the PMMA-gold buried layer. The SAXS data have been interpreted using a theoretical model that accounts for peculiarities of disordered systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A magnetic study of 10 nm magnetite nanoparticles diluted in lyotropic liquid crystal and common liquids was carried out. In the liquid crystal the ZFC-FC curves showed a clear irreversible behavior, and it was possible to distinguish the nematic from the isotropic phase since the magnetization followed the dependence of the nematic order parameter with the temperature. This behavior could be mimicked by Monte Carlo simulation. (C) 2011 American Institute of Physics. [doi:10.1063/1.3549616]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the case of quantum wells, the indium segregation leads to complex potential profiles that are hardly considered in the majority of the theoretical models. The authors demonstrated that the split-operator method is useful tool for obtaining the electronic properties in these cases. Particularly, they studied the influence of the indium surface segregation in optical properties of InGaAs/GaAs quantum wells. Photoluminescence measurements were carried out for a set of InGaAs/GaAs quantum wells and compared to the results obtained theoretically via split-operator method, showing a good agreement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the invariant differential cross section for production of K(S)(0), omega, eta', and phi mesons in p + p collisions at root s 200 GeV. Measurements of omega and phi production in different decay channels give consistent results. New results for the omega are in agreement with previously published data and extend the measured p(T) coverage. The spectral shapes of all hadron transverse momentum distributions measured by PHENIX are well described by a Tsallis distribution functional form with only two parameters, n and T, determining the high-p(T) and characterizing the low-p(T) regions of the spectra, respectively. The values of these parameters are very similar for all analyzed meson spectra, but with a lower parameter T extracted for protons. The integrated invariant cross sections calculated from the fitted distributions are found to be consistent with existing measurements and with statistical model predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the magnetic separation approach to facilitate the recovery of gold nanoparticle (AuNP) catalysts. The use of magnetically recoverable supports for the immobilization of AuNPs instead of traditional oxides, polymers or carbon based solids guarantees facile, clean, fast and efficient separation of the catalyst at the end of the reaction cycle. Magnetic separation can be considered an environmentally benign separation approach, since it minimizes the use of auxiliary substances and energy for achieving catalyst recovery. The catalyst preparation is based on the immobilization of Au(3+) on the surface of core-shell silica-coated magnetite nanoparticles, followed by metal reduction using two different methods. AuNPs were prepared by thermal reduction in air and by hydrogen reduction at mild temperature. Interestingly, the mean particle size of the supported AuNPs was similar (ca. 5.9 nm), but the polydispersity of the samples is quite different. The catalytic activity of both catalysts in the aerobic oxidation of alcohols was investigated and a distinct selectivity for benzyl alcohol oxidation was observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The PHENIX experiment has measured the suppression of semi-inclusive single high-transverse-momentum pi(0)'s in Au+Au collisions at root s(NN) = 200 GeV. The present understanding of this suppression is in terms of energy loss of the parent (fragmenting) parton in a dense color-charge medium. We have performed a quantitative comparison between various parton energy-loss models and our experimental data. The statistical point-to-point uncorrelated as well as correlated systematic uncertainties are taken into account in the comparison. We detail this methodology and the resulting constraint on the model parameters, such as the initial color-charge density dN(g)/dy, the medium transport coefficient <(q) over cap >, or the initial energy-loss parameter epsilon(0). We find that high-transverse-momentum pi(0) suppression in Au+Au collisions has sufficient precision to constrain these model-dependent parameters at the +/- 20-25% (one standard deviation) level. These constraints include only the experimental uncertainties, and further studies are needed to compute the corresponding theoretical uncertainties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a simple mean-field lattice model to describe the behavior of nematic elastomers. This model combines the Maier-Saupe-Zwanzig approach to liquid crystals and an extension to lattice systems of the Warner-Terentjev theory of elasticity, with the addition of quenched random fields. We use standard techniques of statistical mechanics to obtain analytic solutions for the full range of parameters. Among other results, we show the existence of a stress-strain coexistence curve below a freezing temperature, analogous to the P-V diagram of a simple fluid, with the disorder strength playing the role of temperature. Below a critical value of disorder, the tie lines in this diagram resemble the experimental stress-strain plateau and may be interpreted as signatures of the characteristic polydomain-monodomain transition. Also, in the monodomain case, we show that random fields may soften the first-order transition between nematic and isotropic phases, provided the samples are formed in the nematic state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic properties of liquid ammonia are investigated by a sequential molecular dynamics/quantum mechanics approach. Quantum mechanics calculations for the liquid phase are based on a reparametrized hybrid exchange-correlation functional that reproduces the electronic properties of ammonia clusters [(NH(3))(n); n=1-5]. For these small clusters, electron binding energies based on Green's function or electron propagator theory, coupled cluster with single, double, and perturbative triple excitations, and density functional theory (DFT) are compared. Reparametrized DFT results for the dipole moment, electron binding energies, and electronic density of states of liquid ammonia are reported. The calculated average dipole moment of liquid ammonia (2.05 +/- 0.09 D) corresponds to an increase of 27% compared to the gas phase value and it is 0.23 D above a prediction based on a polarizable model of liquid ammonia [Deng , J. Chem. Phys. 100, 7590 (1994)]. Our estimate for the ionization potential of liquid ammonia is 9.74 +/- 0.73 eV, which is approximately 1.0 eV below the gas phase value for the isolated molecule. The theoretical vertical electron affinity of liquid ammonia is predicted as 0.16 +/- 0.22 eV, in good agreement with the experimental result for the location of the bottom of the conduction band (-V(0)=0.2 eV). Vertical ionization potentials and electron affinities correlate with the total dipole moment of ammonia aggregates. (c) 2008 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bulk Zn(1-x)Co(x)O samples were synthesized via standard solid-state reaction route with different Co molar concentrations up to 21%. A detailed microstructural analysis was carried out to investigate alternative sources of ferromagnetism, such as secondary phases and nanocrystals embedded in the bulk material. Conjugating different techniques we confirmed the Zn replacement by Co ions in the wurtzite ZnO structure, which retains, however, a high crystalline quality. No segregated secondary phases neither Co-rich nanocrystals were detected. Superconducting quantum interference device magnetometry demonstrates a paramagnetic Curie-Weiss behavior with antiferromagnetic interactions. We discuss the observed room temperature paramagnetism of our samples considering the current models for the magnetic properties of diluted magnetic semiconductors. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3459885]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we use resonant x-ray diffraction combined with polarization analysis of the diffracted beam to study the magnetic ordering in EuTe/PbTe multilayers. The presence of satellites at the (1/2 1/2 1/2) magnetic reflection of a 50 /repetition EuTe/PbTe superlattice demonstrated the existence of magnetic correlations among the alternated EuTe layers. The behavior of the satellites intensity as T increases toward the Neel temperature T(N) indicates that these correlations persist nearly up to T(N) and suggests the preferential decrease of the magnetic order parameter of external monolayers of each EuTe layer within the superlattice. (C) 2008 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present density of states and electronic transport calculations of single vacancies in carbon nanotubes. We confirm that the defect reconstructs into a pentagon and a nonagon, following the removal of a single carbon atom. This leads to the formation of a dangling bond. Finally, we demonstrate that care must be taken when calculating the density of states of impurities in one-dimensional systems in general. Traditional treatments of these systems using periodic boundary conditions leads to the formation of minigaps even in the limit of large unit cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural, dielectric, and vibrational properties of pure and rare earth (RE)-doped Ba(0.77) Ca(0.23)TiO(3) (BCT23; RE = Nd, Sm, Pr, Yb) ceramics obtained via solid-state reaction were investigated. The pure and RE-doped BCT23 ceramics sintered at 1450 degrees C in air for 4 h showed a dense microstructure in all ceramics. The use of RE ions as dopants introduced lattice-parameter changes that manifested in the reduction of the volume of the unit cell. RE-doped BCT23 samples exhibit a more homogenous microstructure due to the absence of a Ti-rich phase in the grain boundaries as demonstrated by scanning electron microscopy imaging. The incorporation of REs led to perturbations of the local symmetry of TiO(6) octahedra and the creation of a new Raman mode. The results of Raman scattering measurements indicated that the Curie temperature of the ferroelectric phase transition depends on the RE ion and ion content, with the Curie temperature shifting toward lower values as the RE content increases, with the exception of Yb(3+) doping, which did not affect the ferroelectric phase transition temperature. The phase transition behavior is explained using the standard soft mode model. Electronic paramagnetic resonance measurements showed the existence of Ti vacancies in the structure of RE-doped BCT23. Defects are created via charge compensation mechanisms due to the incorporation of elements with a different valence state relative to the ions of the pure BCT23 host. It is concluded that the Ti vacancies are responsible for the activation of the Raman mode at 840 cm(-1), which is in agreement with lattice dynamics calculations. (c) 2011 American Institute of Physics. [doi:10.1063/1.3594710]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural and optical properties of stable glasses in the Y(2)O(3)-CaO-B(2)O(3) system, containing the same Y/Ca ratio as the YCa(4)O(BO(3))(3) (YCOB) crystal, were determined from Raman and reflectance infrared spectroscopy. Changes in optical functions with composition are associated with an increase in the number of non-bridging oxygen and to calcium/yttrium oxides content. Refractive indexes values (from 1.597 to 1.627 at lambda=2 mu m) are in good agreement with those of the YCOB crystal, an indication that these glasses are potential candidates for optical applications due to their ease of shaping as large bulk samples or fibers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A thermodynamic approach is presented to model devices manufactured with cellular polymers. They are heterogeneous nonpolar space-charge electrets that exhibit much higher piezoelectricity than the well-known ferroelectric polymers. Their pyroelectric and piezoelectric properties are characterized by adequate coefficients which quantify the performance of devices manufactured with those materials. The method presented in this contribution to calculate those coefficients is exact and consistent avoiding ad hoc simplifications introduced in other approaches. The results obtained by this method allow drawing conclusions regarding device optimization.